

U
se

r
G

u
id

e
 Copyright, Confidentiality and Disclaimer Statements.

While the information in this publication is believed to be accurate, Ellisys
makes no warranty of any kind to this material including, but not limited
to, the implied warranties of merchantability and fitness for a particular
purpose. Ellisys shall not be liable for any errors contained herein, or for
incidental or consequential damages in connection with the furnishing,
performance or use of this material.

No part of this publication may be reproduced, stored in a retrieval
system or transmitted, in any form or by any means, photocopying,
recording or otherwise, without prior written consent of Ellisys. No third
party intellectual property right liability is assumed with respect to the use
of the information contained herein. Ellisys assumes no responsibility for
errors or omissions contained in this book. This publication and features
described herein are subject to change without notice.

Copyright (C) Ellisys 2008. All rights reserved.

All products or services mentioned in this manual are covered by
trademarks, service marks, or product names as designated by the
companies who market those products.

This manual is populated throughout with screens captured from a
specific version of Ellisys USB Explorer 260 software. All the information
contained in the screens are samples and serve as instructional purposes
only.

Date Revision Changes

2007-12-12 2.8 Initial release.

2008-04-15 2.8.3000 Added few new instructions
(WaitAndSendPacket,
HostSetMaxTransactionDuration,
HostResetMaxTransactionDuration).

Document Revision History

Ellisys Phone: +41 22 777 77 89
Chemin du Grand-Puits 38 Fax: +41 22 777 77 90
CH-1217 Meyrin Geneva Email: info@ellisys.com
Switzerland Web: http://www.ellisys.com

Ellisys Contact Details

http://www.ellisys.com

E
lli

sy
s

U
S
B
 E

xp
lo

re
r

2
6
0
 G

en
er

at
o
r
CONDITIONS OF USE AND LIMITED

WARRANTY TERMS

These conditions and terms are deemed to be accepted by the customer at the time the
product is purchased, leased, lent or used, whether or not acknowledged in writing.

Conditions of Use

The customer is only authorized to use the product for its own activities, whether
professional or private. Thus, the customer is, in particular, forbidden to resell, lease or lend
the product to any third party. In addition, the customer has, in particular, no right to
disassembly, modify, copy, reverse engineer, create derivative works from or otherwise
reduce or alter the product. The product may also not be used in any improper way.

Limited Warranty Coverage

Ellisys warrants to the original customer of its products that its products are free from
defects in material and workmanship for the warranty period. Subject to the conditions and
limitations set forth below, Ellisys will, at its option, either repair or replace any part of its
products that prove defective by reason of improper workmanship or materials. Repaired
parts or replacement products will be provided by Ellisys on an exchange basis, and will be
either new or refurbished to be functionally equivalent to new. If Ellisys is unable to repair or
replace the product, it will refund the current value of the product at the time the warranty
claim is made. In no event shall Ellisys' liability exceed the original purchase price of
product.

Excluded Products and Problems

This limited warranty does not cover any damage to this product that results from improper
installation, accident, abuse, misuse, natural disaster, insufficient or excessive electrical
supply, abnormal mechanical or environmental conditions, or any unauthorized disassembly,
repair, or modification. This limited warranty also does not apply to any product on which the
original identification information has been altered, obliterated or removed, has not been
handled or packaged correctly, or has been sold as second-hand. This limited warranty only
applies to the original customer of the product for so long as the original customer owns the
product. This limited warranty is non-transferable.

This limited warranty covers only repair, replacement or refund for defective Ellisys products,
as provided above. Ellisys is not liable for, and does not cover under warranty, any loss of
data or any costs associated with determining the source of system problems or removing,
servicing or installing Ellisys products.

Obtaining Warranty Service

To obtain warranty service, you may return a defective product to the authorized Ellisys
dealer or distributor from which you purchased the Ellisys product. Please confirm the terms
of your dealer's or distributor's return policies prior to returning the product. Typically, you
must include product identification information, including model number and serial number
with a detailed description of the problem you are experiencing. You must also include proof
of the date of original retail purchase as evidence that the product is within the applicable
warranty period.

The returned product will become the property of Ellisys. Repaired or replacement product
will be shipped at Ellisys' expense. Repaired or replacement product will continue to be
covered by this limited warranty for the remainder of the original warranty or 90 days,
whichever is longer.
3

4

U
se

r
G

u
id

e
 Limitations

THE FOREGOING IS THE COMPLETE WARRANTY FOR ELLISYS PRODUCTS AND SUPERSEDES
ALL OTHER WARRANTIES AND REPRESENTATIONS, WHETHER ORAL OR WRITTEN. EXCEPT
AS EXPRESSLY SET FORTH ABOVE, NO OTHER WARRANTIES ARE MADE WITH RESPECT TO
ELLISYS PRODUCTS AND ELLISYS EXPRESSLY DISCLAIMS ALL WARRANTIES NOT STATED
HEREIN, INCLUDING, TO THE EXTENT PERMITTED BY APPLICABLE LAW, ANY WARRANTY
THAT MAY EXIST UNDER NATIONAL, STATE, PROVINCIAL OR LOCAL LAW INCLUDING BUT
NOT LIMITED TO ANY IMPLIED WARRANTY OF NON-INFRINGEMENT, MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. ALL WARRANTIES, WHETHER EXPRESS OR IMPLIED,
ARE LIMITED TO THE PERIODS OF TIME SET FORTH ABOVE. SOME STATES OR OTHER
JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES OR
LIMITATIONS ON HOW LONG AN IMPLIED WARRANTY LASTS, SO THE ABOVE LIMITATIONS
MAY NOT APPLY TO YOU.

ELLISYS PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE
SUPPORT EQUIPMENT OR FOR APPLICATIONS IN WHICH THE FAILURE OR MALFUNCTION OF
THE PRODUCTS WOULD CREATE A SITUATION IN WHICH PERSONAL INJURY OR DEATH IS
LIKELY TO OCCUR. ELLISYS SHALL NOT BE LIABLE FOR THE DEATH OF ANY PERSON OR ANY
LOSS, INJURY OR DAMAGE TO PERSONS OR PROPERTY BY USE OF PRODUCTS USED IN
APPLICATIONS INCLUDING, BUT NOT LIMITED TO, MILITARY OR MILITARY-RELATED
EQUIPMENT, TRAFFIC CONTROL EQUIPMENT, DISASTER PREVENTION SYSTEMS AND
MEDICAL OR MEDICAL-RELATED EQUIPMENT.

ELLISYS' TOTAL LIABILITY UNDER THIS OR ANY OTHER WARRANTY, EXPRESS OR IMPLIED,
IS LIMITED TO REPAIR, REPLACEMENT OR REFUND. REPAIR, REPLACEMENT OR REFUND
ARE THE SOLE AND EXCLUSIVE REMEDIES FOR BREACH OF WARRANTY OR ANY OTHER
LEGAL THEORY. TO THE FULLEST EXTENT PERMITTED BY APPLICABLE LAW, ELLISYS SHALL
NOT BE LIABLE TO THE CUSTOMER OF AN ELLISYS PRODUCT FOR ANY DAMAGES,
EXPENSES, LOST DATA, LOST REVENUES, LOST SAVINGS, LOST PROFITS, OR ANY OTHER
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING FROM THE PURCHASE, USE OR
INABILITY TO USE THE ELLISYS PRODUCT, EVEN IF ELLISYS HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES. SOME STATES OR OTHER JURISDICTIONS DO NOT
ALLOW THE EXCLUSION OR LIMITATION OF INCIDENTAL OR CONSEQUENTIAL DAMAGES,
SO THE ABOVE LIMITATIONS OR EXCLUSIONS MAY NOT APPLY TO YOU.

Severability

If any provision or any portion of any provision contained in these terms is held to be invalid,
illegal or unenforceable by a court of competent jurisdiction, then the remaining provisions,
and if a portion of any provision is unenforceable, then the remaining portion of such
provision shall, nevertheless, remain in full force and effect. The parties undertake to
negotiate in good faith with a view to replace such invalid, illegal or unenforceable provision
or part thereof with another provision not so invalid, illegal or unenforceable with the same
or similar effect, and further agree to be bound by the mutually agreed substitute provision.

Warranty Period

The warranty begins on the date of purchase and covers a period of two (2) years.

Governing Law

These conditions and terms shall be governed by and construed in accordance with the law
of Switzerland.

Jurisdiction; Venue

The parties consent to the exclusive personal jurisdiction of, and venue in, the District Court
of Geneva, Switzerland.

E
lli

sy
s

U
S
B
 E

xp
lo

re
r

2
6
0
 G

en
er

at
o
r
Table of Contents

 About this Manual ... 7
1 Product Overview.. 9

1.1 Overview .. 9
1.2 Main Features ... 9

2 Installing the Ellisys USB Explorer 260 11
2.1 Software Prerequisites...11
2.2 Installing Software..12
2.3 Front Panel Overview ..18
2.4 Back Panel Overview ...19
2.5 Connecting to the Computer...19

3 User Interface Reference .. 25
3.1 Organizing Panes ..26
3.2 Main Toolbar ..27
3.3 Main Menu ...29
3.4 Opening a File ..33
3.5 Saving a File ..33
3.6 Printing a File ...34
3.7 Editing a Script...35
3.8 Advanced Editing Features ...36
3.9 Searching ..37
3.10 Working with Bookmarks..40
3.11 Working with Breakpoints...41
3.12 Compiling a Script...42
3.13 Running a Script ...43
3.14 Working with Registers ..45

4 Language Reference.. 47
4.1 Comments ...47
4.2 Include Files...47
4.3 Constants Declaration ...48
4.4 Variables Declaration...48
4.5 Functions Declaration ..49
4.6 Function Calls...50
4.7 Enumerations Declarations...51
4.8 Namespaces Declarations ..52
4.9 Buffer Usage ..53
4.10 Counters..53
4.11 Timers...54
4.12 Stop Keyword...55
4.13 Breakpoint Keyword ..55
4.14 If Statement...55
4.15 Switch Statement..56
4.16 Repeat Statement ...57
4.17 While Statement ...57
4.18 Do While Statement ..58
4.19 For Statement ..58
5

6

U
se

r
G

u
id

e
 4.20 Mathematical expressions .. 59
4.21 Conditional expressions ... 61

5 Instruction Set Reference..63
5.1 Sleep Instruction.. 63
5.2 StartCountdown Instruction ... 64
5.3 WaitCountdownReached Instruction 65
5.4 StartTimer Instruction... 66
5.5 StopTimer Instruction ... 67
5.6 WaitTimer Instruction ... 67
5.7 CopyMemory Instruction ... 69
5.8 CompareMemory Instruction.. 71
5.9 WaitButtonPressed Instruction ... 74
5.10 WaitTriggerIn Instruction... 75
5.11 GenerateTriggerOut Instruction 77
5.12 ConfigureGenerator Instruction 78
5.13 ForceLinesState Instruction.. 79
5.14 ReleaseLinesState Instruction... 79
5.15 WaitLinesState Instruction ... 80
5.16 SendPacket Instruction.. 81
5.17 WaitPacket Instruction .. 84
5.18 WaitTokenPacket Instruction .. 86
5.19 WaitDataPacket Instruction.. 89
5.20 WaitHandshakePacket Instruction 91
5.21 WaitAndSendPacket Instruction 93
5.22 HostAutoGenerateSof Instruction.................................. 104
5.23 HostWaitGeneratedSof Instruction 105
5.24 HostSetMaxTransactionDuration Instruction 106
5.25 HostResetMaxTransactionDuration Instruction 107

 Frequently Asked Questions ..109
 Glossary ..111
 Index...115

E
lli

sy
s

U
S
B
 E

xp
lo

re
r

2
6
0
 G

en
er

at
o
r
About this Manual

Typographic Conventions

Bold is used to indicate menu commands, buttons, and tabs.

Italics are used to indicate fields, pane names, window names and cross
references.

Fixed width is used to indicate system file names, text typed and code
snippets.

A warning symbol describes a possible critical situation and how to
avoid it.

An information symbol tells you how to respond to a situation that
may arise.

A tip symbol tells you information that will help you carry out a
procedure.

Where to Find More Help

Go to the Ellisys website and the following pages for the latest
information:

• Ellisys products page - Go to www.ellisys.com/products/ for the
latest product information and documentation.

• Application notes and white papers - Go to www.ellisys.com/
technology/ to find up-to-date information about the technology.

• Distributors - Go to www.ellisys.com/sales/ to find a list of Ellisys
distributors.

• Technical support - Go to www.ellisys.com/support/ to send a
question directly to the Ellisys support team.
7

www.ellisys.com/products/
www.ellisys.com/technology/
www.ellisys.com/technology/
www.ellisys.com/sales/
www.ellisys.com/support/

8

U
se

r
G

u
id

e

E
lli

sy
s

U
S
B
 E

xp
lo

re
r

2
6
0
 G

en
er

at
o
r
1 Product Overview

1.1 Overview
The USB Explorer 260 Generator is a generator for the Universal Serial
Bus and protocols based on USB. The USB Explorer 260 Generator verifies
product and component reliability by generating reproducible traffic,
timing and error scenarios.

The USB Explorer 260 Generator contains a specialized processor
specifically designed for the USB protocol. The USB Explorer 260
Generator produces sequences of arbitrary packets with programmable
inter-packet delay and can wait for any kind of response packet or event.
The processor's instruction set enables you to emulate USB hosts and
devices.

1.2 Main Features
The USB Explorer 260 Generator enables you to:

• Emulate most USB equipment, including USB hosts and USB devices.

• Perform functional validation and stress testing of protocol stacks.

• Generate arbitrary packets with full control of the packet raw data
down to the PHY layer.

• Generate sequences of packets with programmable inter-packet delay.

• Use exported scripts from protocol analysis software to play back error
scenarios.

• Test error recovery mechanisms by generating frames with incorrect
content or timing.

The USB Explorer 260 Generator’s software allows you to quickly and
easily create, edit, and debug scripts. Traces previously recorded by an
Ellisys USB Explorer 260 Analyzer can be exported to a script and played
back by the generator. This will allow you to quickly understand and fix
issues that may arise during device, driver or software development.

Visit the product web page at www.ellisys.com/products/usbex260/
for the latest product information and documentation.
Product Overview 9

10

U
se

r
G

u
id

e

Product Overview

E
lli

sy
s

U
S
B
 E

xp
lo

re
r

2
6
0
 G

en
er

at
o
r
2 Installing the Ellisys USB Explorer 260

Before installing the Ellisys USB Explorer 260 ensure your computer
meets the following requirements:

• Microsoft Windows Installer 3.0 or later. If the installation does not run
smoothly, or if the system indicates that there is a version error,
update your Windows Installer.

• Microsoft .Net Framework version 2.0.

• Pentium 4, 1.8 GHz or compatible processor, or better.

• 512 MBytes of RAM or more.

• 1024x768 screen display resolution with 256 colors or better.

• USB 2.0 host controller.

2.1 Software Prerequisites
The USB Explorer 260 software requires several software components.
Ellisys recommends that you visit the following web pages to update your
version of Microsoft .Net Framework and Windows:

• www.microsoft.com/net to download the Microsoft .Net Framework
version 2.0.

• windowsupdate.microsoft.com to update your version of Windows.
When using the Windows update service it will automatically download
and install the Microsoft .Net Framework version 2.0.

See your System Administrator for more information about updating
Microsoft .Net Framework and Windows.
Installing the Ellisys USB Explorer 260 11

windowsupdate.microsoft.com
www.microsoft.com/net

12

U
se

r
G

u
id

e
 2.2 Installing Software
To install the USB Explorer 260’s software:
1. Insert the Ellisys USB Explorer 260 installation CD-ROM that

accompanies the product into the computer’s CD-ROM drive.

The USB Explorer 260 Setup Wizard screen appears:

If the USB Explorer 260 Setup Wizard screen does not appear
automatically; Click Start | Run, type d:\setup.exe (change d: to
match the drive letter of your CD-ROM) and click on OK.
Installing the Ellisys USB Explorer 260

E
lli

sy
s

U
S
B
 E

xp
lo

re
r

2
6
0
 G

en
er

at
o
r
2. Read the Warning note and click on Next.

The USB Explorer 260 Licence Agreement screen appears:

3. Read the licence agreement carefully and select I Agree.
Installing the Ellisys USB Explorer 260 13

14

U
se

r
G

u
id

e
 4. Click on Next.

The Select Installation Folder screen appears:

5. The default installation folder appears in the Folder field. Ellisys
recommend that you use the default folder, however if you wish to
change this folder click on Browse and navigate to the folder
required.

6. Select whether anyone or only the user currently logged on can access
the software by selecting either Everyone or Just me.
Installing the Ellisys USB Explorer 260

E
lli

sy
s

U
S
B
 E

xp
lo

re
r

2
6
0
 G

en
er

at
o
r
7. Click on Next.

The Confirm Installation screen appears:
Installing the Ellisys USB Explorer 260 15

16

U
se

r
G

u
id

e
 8. Click on Next to continue the software’s installation.

An Installation Progress screen appears.
Installing the Ellisys USB Explorer 260

E
lli

sy
s

U
S
B
 E

xp
lo

re
r

2
6
0
 G

en
er

at
o
r
When the software has been installed, the Installation Complete screen

appears:

9. Click on Close.

The USB Explorer 260 software is now installed.

After installing USB Explorer 260 software a new Hardware Wizard
may appear. Refer to 2.5, Connecting to the Computer, on page 19
for more information about installing the USB driver.
Installing the Ellisys USB Explorer 260 17

18

U
se

r
G

u
id

e
 2.3 Front Panel Overview
Ellisys USB Explorer 260’s front panel:

The Power LED is illuminated constant green when
connected to a USB 2.0 host controller and working
normally.

The Power LED is illuminated constant red when
connected via a USB 1.1 host controller and working
normally. Performance may not be optimal.

The Power LED blinks green when connected to a USB 2.0
host controller and the driver is not yet fully installed.

The Power LED blinks red when connected to a USB 1.1
host controller and the driver is not yet fully installed.

The Activity LED blinks green when traffic is
detected. The blink rate depends on the amount
traffic detected, the faster the blink rate the greater
amount of traffic detected.

The Activity LED blinks red when traffic is recorded
or generated.

The Trigger LED blinks green when waiting for an
event to occur.

The Trigger LED is illuminated red for a short period
when the expected event occurs.
Installing the Ellisys USB Explorer 260

E
lli

sy
s

U
S
B
 E

xp
lo

re
r

2
6
0
 G

en
er

at
o
r
2.4 Back Panel Overview

Ellisys USB Explorer 260’s back panel:

A USB cable must be connected between the Computer connector and the
computer on which the software runs.

When connecting the USB cable DO NOT force the connector into
the USB Explorer 260. The metal part of the connector should not
be inserted completely into the connection port. Forcing the
connector or inserting all of the metal part of the connector may
break the port connection and is not covered by the warranty.

2.5 Connecting to the Computer
The USB Explorer 260 connects on a USB port, allowing the use of any
notebook or desktop computer. The unit is powered by USB and does not
require an external adapter. A driver needs to be installed on the
computer to ensure proper operation.

Although the USB Explorer 260 can upload or download data on a full
speed USB 1.1 connection, Ellisys strongly recommends that you
connect it to a high speed USB 2.0 port to obtain optimal
performance. If you experience problems with the USB Explorer 260,
please ensure it is connected on a high speed USB 2.0 enabled host
controller before contacting technical support.

Follow the steps below to install the USB driver:
1. Connect the USB Explorer 260.

If you are connecting the USB Explorer 260 for the first time wait until
Windows displays a message saying a new device has been discovered
and go to Step 3.
Installing the Ellisys USB Explorer 260 19

20

U
se

r
G

u
id

e
 2. If you want to update a previously installed device driver:

• Open the Device Manager window: Start | Control Panel.

• Double-click the System icon.

• Click the Hardware tab.

• Click on Device Manager.

• Click on Ellisys protocol analyzers.

• Right-click and select Update Driver.

The Hardware Update Wizard window appears:

3. Select No, not this time.
Installing the Ellisys USB Explorer 260

E
lli

sy
s

U
S
B
 E

xp
lo

re
r

2
6
0
 G

en
er

at
o
r
4. Click on Next.

The Found New Hardware window appears:

5. Select Install the software automatically (Recommended).
Installing the Ellisys USB Explorer 260 21

22

U
se

r
G

u
id

e
 6. Click on Next.

The Please wait while the wizard installs the software window appears:

Windows installs the driver.
Installing the Ellisys USB Explorer 260

E
lli

sy
s

U
S
B
 E

xp
lo

re
r

2
6
0
 G

en
er

at
o
r
When the installation is complete The wizard has finished installing the

software window appears:

7. Click on Finish.

The installation is complete.
Installing the Ellisys USB Explorer 260 23

24

U
se

r
G

u
id

e

Installing the Ellisys USB Explorer 260

E
lli

sy
s

U
S
B
 E

xp
lo

re
r

2
6
0
 G

en
er

at
o
r

Menu bar
Toolbar

Script edi

Out
pan

ers
3 User Interface Reference

The user interface of the Ellisys USB Explorer 260 Generator software
contains a number of panes, menus, toolbars and other visual elements.

tor

put
e

Regist
pane

Close pane buttonAuto hide pane button

The USB Explorer 260 Generator has several default panes. Each pane
displays specific information or allows you to interact with the software for
a given task:

• Script Editor - Shows the current script. The Script Editor also allows
editing the script, setting or clearing breakpoints, and placing
bookmark to navigate through the script.

• Output pane - Shows messages about a script after compiling. If
there is an error in the script the Output pane will show an error
description and the error’s position: file, line and column.

• Register pane - Shows the contents of the variables, see 3.14,
Working with Registers, on page 45 for more information.
User Interface Reference 25

26

U
se

r
G

u
id

e
 3.1 Organizing Panes
To open or display a pane:
1. Select View in the menu and click on the pane required in the View

menu.

The selected pane opens.

To close a pane:

1. Click on Close positioned on the top right-hand corner of the title
bar of the pane.

The pane closes.

To hide a pane:

1. Click on Auto Hide positioned on the top right-hand corner of the

title bar.

The pane is hidden and the pane’s name appears as a tab at the side of
the screen.

To move a pane or window:
1. Click on the title bar of a pane or window.
2. Press and hold the left mouse button and drag the pane or window.

A window placer appears:

3. Keep the mouse button pressed and point to one of the following:

• Center to open a pane as a floating window in the screen.

• Top to move the pane to the top of the screen or pane group.

• Right to move the pane to the right of the screen or pane group.
User Interface Reference

E
lli

sy
s

U
S
B
 E

xp
lo

re
r

2
6
0
 G

en
er

at
o
r
• Left to move the pane to the left of the screen or pane group.

• Bottom to move the pane to the bottom of the screen or pane

group.

3.2 Main Toolbar
The table below shows the USB Explorer 260 Generator toolbar buttons
and their actions.

New Document Opens a new document.

Open Document Opens a folder to allow you open a previous
saved file.

Save Document Saves a document.

Print Opens print options to allow you to print a
document.

Print Preview Opens the print preview window.

Cut Cuts a selection of text.

Copy Copies a selection of text.

Paste Pastes a selection of copied or cut text.

Undo Undoes the previous action.

Redo Redoes the previous action.
User Interface Reference 27

28

U
se

r
G

u
id

e

Find/Replace Opens the find and replace window.

Comment Selection Comments out one or more lines.

Uncomment Selection Uncomment one or more lines.

Toggle Bookmark Toggles a bookmark at a selected line.

Previous Bookmark Finds the previous bookmark.

Next Bookmark Finds the next bookmark.

Clear Bookmarks Clears all bookmarks.

Compile Compiles a script.

Run Runs a stopped or paused script.

Break Pauses a script when running.

Stop Stops a running script.

Restart Stops and restarts a script from the
beginning.

Step Steps from line to line in the script.
User Interface Reference

E
lli

sy
s

U
S
B
 E

xp
lo

re
r

2
6
0
 G

en
er

at
o
r
3.3 Main Menu

The table below shows the USB Explorer 260 Generator main menu
options and their actions.

File

New
(CTRL + N)

Creates a new file.

Open
(CTRL + O)

Opens a previous saved file.

Save
(CTRL + S)

Saves a file.

Save As Saves a file with a new name.

Page Setup Opens the Page Setup dialog box that
lets you set the page margins and other
parameters.

Print Preview Opens the Print Preview window.

Print
(CTRL + P)

Prints a file.

Exit Exits the software.

Edit

Undo
(CTRL + Z)

Undoes the previous action.

Redo
(CTRL + Y)

Redoes the previous action.

Cut
(CTRL + X)

Cuts a selection of text.

Copy
(CTRL + C)

Copies a selection of text.
User Interface Reference 29

30

U
se

r
G

u
id

e
 Paste
(CTRL + V)

Pastes a selection of copied or cut text.

Edit | Advanced

Mark Line Modifications Marks line modifications in the file.

Highlight Current Line Highlights the current line in the script.

Show Column 80 Guide Displays the column guide in the script.

Comment Selection Adds a comment to the current selected
line.

Uncomment Selection Removes the comment from the
selected line.

Make Uppercase
(CTRL + SHIFT + U)

Changes selected lowercase text to
uppercase text.

Make Lowercase
(CTRL + U)

Changes selected uppercase text to
lowercase text.

Edit | Bookmarks

Toggle Bookmark Toggles a bookmark at a selected line.

Enable Bookmark Enables the selected bookmark.

Previous Bookmark Finds the previous bookmark.

Next Bookmark Finds the next bookmark.

Clear Bookmarks Clears all bookmarks.

Insert Snippet Code
(CTRL + I)

Opens the Insert Snippet code list.
User Interface Reference

E
lli

sy
s

U
S
B
 E

xp
lo

re
r

2
6
0
 G

en
er

at
o
r
View

Output window Opens or closes the Output window.

Registers window Opens or closes the Registers window.

Search

Find/Replace
(CTRL + F)

Opens the Find/Replace window.

Find Next
F3

Finds the text previously entered in the
Find/Replace window.

Find Previous
(SHIFT + F3)

Finds the text previously entered in the
Find/Replace window.

Go To Line
(CTRL + G)

Opens the Go To Line window.

Script

Compile
(F7)

Compiles a script.

Run
(F5)

Runs a stopped or paused script.

Break Pauses a script when running.

Stop
(SHIFT +F5)

Stops a running script.

Restart Stops and restarts a script from the
beginning.

Step
(F10)

Steps from line to line in the script.

Toggle Breakpoint
(F9)

Toggles a breakpoint at a selected line.
User Interface Reference 31

32

U
se

r
G

u
id

e
 Clear all Breakpoints
(CTRL+SHIFT +F9)

Removes all breakpoints in the script.

Select a Generator Opens the Available Generators window.

Help

User Guide Opens the online user guide.

Ellisys website Opens the Ellisys website in your default
internet browser.

Contact support Opens a form to contact the technical
support.

About Opens the About window.
User Interface Reference

E
lli

sy
s

U
S
B
 E

xp
lo

re
r

2
6
0
 G

en
er

at
o
r
3.4 Opening a File

To open a file:

1. Select File | Open in the menu or click on Open Document .

The Open File window appears:

2. Select the file required and click on Open.

The selected file opens in the software.

3.5 Saving a File
To save a file:

1. Select File | Save in the menu or click on Save Document .

The file is saved.
User Interface Reference 33

34

U
se

r
G

u
id

e
 To save a file with a new name:
1. Select File | Save As in the menu.

The Save As window appears:

2. Navigate to the directory where the file is to be saved.
3. Enter the required name of the file in the File name field and click on

Save.

The file is saved with the required name and the original file is not
modified.

3.6 Printing a File
Use the Page Setup option, File | Page Setup, to setup how the file
should be printed. This option will depend on the printer, please see your
printer’s documentation for more information.

A file can be very large therefore it is advisable to check the size of
the file before trying to print the file.
User Interface Reference

E
lli

sy
s

U
S
B
 E

xp
lo

re
r

2
6
0
 G

en
er

at
o
r
To print a file:

1. Select File | Print in the menu or click on Print .

The Print window appears:

2. Select the printer and printer setup if required.
3. Click on OK.

The file is printed.

3.7 Editing a Script
The USB Explorer 260 Generator includes several specialized instructions.
Example code for these instructions can be inserted to help you write
instructions. An example code is called a code snippet.

A full description of the specialized instructions can be found in Chapter 5,
Instruction Set Reference, on page 63.

To insert a code snippet:
1. Click on the point in the script where the code snippet is to be

inserted.
2. Select Edit | Insert Code Snippet in the menu.

or
Press CTRL + I.
User Interface Reference 35

36

U
se

r
G

u
id

e
 The Code Snippet list appears:

3. Select the code snippet required from the list.
4. Double-click on the code snippet required.

or
Select the snippet required and press ENTER.

The selected code snippet is inserted into the script and can be modified.

3.8 Advanced Editing Features
All the USB Explorer 260 Generator’s advanced editing features can be
accessed by clicking Edit | Advanced in the menu.

To mark or unmark line modifications:
1. Select Edit | Advanced | Mark Line Modifications in the menu.

All lines that have been modified are marked with a yellow mark beside
the line.

To highlight the current line:
1. Select Edit | Advanced | Highlighting Current Line in the menu.

The line with the cursor is highlighted.

To display the column 80 guide:
1. Select Edit | Advanced | Show 80 Column Guide in the menu.

The 80 column guide appears as a line in the main script pane.

To comment a selection in a script:
1. Select the lines you want to comment.
User Interface Reference

E
lli

sy
s

U
S
B
 E

xp
lo

re
r

2
6
0
 G

en
er

at
o
r
2. Click on Comment Selection

or
Select Edit | Advanced | Comment Selection in the menu.

Comment markers are inserted before the selected lines.

To uncomment a selection in a script:
1. Select the commented lines you want to uncomment.

2. Click on Uncomment Selection
or
Select Edit | Advanced | Uncomment Selection in the menu.

Comment markers are removed from the selected lines.

To change text case:
1. Select the text required in the script.
2. Select Edit | Advanced | Make Uppercase to change the text’s case

from lowercase to uppercase.

or

3. Select Edit | Advanced | Make Lowercase to change the text’s case
from uppercase to lowercase.

3.9 Searching
Search, find and replace options can be accessed by clicking Search in
the menu.

To search text:

1. Click on Find/Replace

or
Select Search | Find in the menu.
or
Press CTRL + F.
User Interface Reference 37

38

U
se

r
G

u
id

e
 The Find/Replace window appears:

2. Enter what you need to be found in the Find what field.

or

3. Select the Use check box if you want to use Regular expression or
Wildcards.

4. If you selected the Use check box, select Regular expression or

Wildcards from the drop-down list. The Right Arrow beside the

Find What field becomes enabled.

Regular expressions or Wildcards can be selected as an option.
User Interface Reference

E
lli

sy
s

U
S
B
 E

xp
lo

re
r

2
6
0
 G

en
er

at
o
r

5. Click on Right Arrow .

If Wildcards has been selected from the Use drop-down list a Wildcard list
appears;

6. Select the Wildcard required.

If Regular expression has been selected from the Use drop-down list a
Regular expression list appears:

7. Select the Regular expression required.
8. Select the required search options check boxes.
9. Click on the required button: Find Next to find the next occurrence or

Bookmark All to bookmark all occurrences.

The selected search is performed.
User Interface Reference 39

40

U
se

r
G

u
id

e
 To replace text:

1. Click on Find/Replace and then click Quick Replace

or
Select Search | Replace in the menu.
or
Press CTRL + H.

The Find/Replace window appears:

2. Enter what you need to be found in the Find what field.
3. Enter the replacement text in the Replace with field.
4. Select the required search options check boxes.
5. Click on the required button: Find Next to find the next occurrence or

Replace or Replace All to respectively replace the next occurrence
or all occurrences.

The selected replacement is performed.

3.10 Working with Bookmarks
A bookmark is a useful tool that enables you to mark lines of code to help
you navigate through a script.

All the bookmark options can be accessed by selecting Edit | Bookmarks
in the menu.

To toggle a bookmark:
1. Select a line where the bookmark is to be inserted.
User Interface Reference

E
lli

sy
s

U
S
B
 E

xp
lo

re
r

2
6
0
 G

en
er

at
o
r
2. Click on Toggle Bookmark

or
Select Edit | Bookmarks | Toggle Bookmark in the menu.

The bookmark is inserted beside the selected line.

To enable a bookmark:
1. Click on the line beside the bookmark.
2. Select Edit | Bookmarks | Enable Bookmark in the menu.

The selected bookmark is enabled.

To move to the next or previous bookmark:

1. Click on Next Bookmark
or
Select Edit | Bookmarks | Next Bookmark in the menu.

A flashing cursor appears beside the next bookmark.

2. Click on Previous Bookmark
or
Select Edit | Bookmarks | Previous Bookmark in the menu.

A flashing cursor appears beside the previous bookmark.

To remove all bookmarks:

1. Click on Clear Bookmark
or
Select Edit | Bookmarks | Clear Bookmark in the menu.

All bookmarks in the script are removed.

3.11 Working with Breakpoints
A breakpoint is a point in a program which is used to temporarily halt the
execution of that program.

To insert a breakpoint:
1. Select a line where the breakpoint is to be inserted.
2. Select Script | Toggle Breakpoint in the menu

or
Press F9.
User Interface Reference 41

42

U
se

r
G

u
id

e
 A breakpoint is inserted beside the selected line.

To remove all breakpoints:
1. Select Script | Clear All Breakpoint in the menu.

All breakpoints in the script are removed.

3.12 Compiling a Script
To compile a script:
1. Open a script file as described in 3.4, Opening a File, on page 33.

or
Create a new script file and save it.

2. Click on Compile
or
Select Script | Compile in the menu.

The USB Explorer 260 Generator compiles the script.

If the compilation is successful a ‘Compilation Succeeded’ message will
appear in the Output pane.
User Interface Reference

E
lli

sy
s

U
S
B
 E

xp
lo

re
r

2
6
0
 G

en
er

at
o
r
If the compilation is unsuccessful a ‘Compilation Failed’ message will

appear in the Output pane. A list of errors will also be listed in the Output
pane.

To find an error in a compiled script:
1. Compile a script as described in 3.12, Compiling a Script, on page 42.

The compilation errors are listed in the Output pane under the Message
colunm.

2. Double-click on the error description you require in the Output pane.

The line that contains the error is highlighted in the main script pane.

3.13 Running a Script
To select a generator:
1. Select Script | Select a generator in the menu.

The Available Generators window appears:
User Interface Reference 43

44

U
se

r
G

u
id

e
 2. Select the required generator and click on OK.

The generator is selected.

To run a script:
1. Open a script file as described in 3.4, Opening a File, on page 33

or
Create a new script file and save it.

2. Click on Run
or
Select Script | Run in the menu.

If you did not select a generator as a default generator then the Available
Generators window appears:

3. Select on the required generator and click on OK.

The script runs using the selected generator.

To break or pause a script:
1. Run a script as described in 3.13, Running a Script, on page 43.

2. Click on Break
or
Select Script | Break in the menu.

The script is paused.

It is advisable to select a generator as the default generator by
clicking the Use this generator by default check box. This will stop
the Available Generators window appearing every time you run the
software.
User Interface Reference

E
lli

sy
s

U
S
B
 E

xp
lo

re
r

2
6
0
 G

en
er

at
o
r
To stop a script:

1. Run a script as described in 3.13, Running a Script, on page 43.

2. Click on Stop
or
Select Script | Stop in the menu.

The script stops.

To restart a script:

1. Click on Restart
or
Select Script | Restart in the menu.

The script is restarted.

To step a script:

1. Click on Step
or
Select Script | Step in the menu.
or
Press F10.

The script is run command by command.

3.14 Working with Registers
This section describes how you can work with registers. For more
information about registers see 4.10, Counters, on page 53.

All registers are displayed in the Registers pane.

To select a register format:
1. Right-click on one of the registers in the Registers pane.
User Interface Reference 45

46

U
se

r
G

u
id

e
 The Format submenu appears:

2. Click on the format require; Dec, Hex or Bin.

The register format is changed to the selected format and the numbers
are displayed.
User Interface Reference

E
lli

sy
s

U
S
B
 E

xp
lo

re
r

2
6
0
 G

en
er

at
o
r
4 Language Reference

4.1 Comments
Single line comments are done using the // characters.

void Main()
{
 // This is a single line comment
 CopyMemory(Src => [0x00, 0x00],
 Dst => Buffer,
 DstOffset => 200);
}

Multi line comments are open using the /* characters, and are closed
using the */ characters.

void Main()
{
/* This is a multi line comment the prevents the
following instruction to be executed

 CopyMemory(Src => [0x00, 0x00],
 Dst => Buffer,
 DstOffset => 200);
*/
}

4.2 Include Files
Files can be included using the include directive.

The example below shows a script that includes a file and use then the
macro declared inside.

include "MyInclude.esf"

void Main()
{
 // Calls a function declared in MyInclude.esf
 SendPulseAndWaitAnswer(10, 2s);
}

Language Reference 47

48

U
se

r
G

u
id

e
 4.3 Constants Declaration
Constants can be declared with the const keywork.

The example below shows a script that defines two constants.

const NormalState = StateMachine.Running;
const DefaultTimeout = 450ms;

void Main()
{
 WaitForState(State => NormalState,
 Timeout => DefaultTimeout);
}

4.4 Variables Declaration
Variables are instantiated with the var keyword. The variable can be
initialized at declaration with a value. If no initial value is specified the
variable will not be initialized.

var myVar;
var myVar1 = 10;
var myVar2 = CounterB;
var myVar3 = myVar1 * myVar2;

There is no restriction on variables declaration location. Variables can be
declared anywhere in the script. The scope of the variable depends on the
declaration location.

var myGlobalVar = 0;
void MyMacro() { myGlobalVar = 10; }

void Main()
{

var myVar = 0;

for(var i=0; i<10; i++)
{

myVar += 1 << i;
}

Sleep(myVar);
}

Language Reference

E
lli

sy
s

U
S
B
 E

xp
lo

re
r

2
6
0
 G

en
er

at
o
r
4.5 Functions Declaration

Functions can be used to save typing and improve the understanding of a
script. Functions accept parameters and can optionally return a value.

The example below shows a script that defines a function for sending a
trigger pulse and waiting until an answer is received.

void SendPulseAndWaitAnswer(MaxRetries,
 MaxTime)
{
 repeat(MaxRetries)
 {
 GenerateTriggerOut(Output => BncOut,
 Mode => PulseHigh);

 WaitTriggerIn(Input => BncIn,
 Condition => RisingEdge,
 Timeout => MaxTime);

 if(!TimeoutOccured)
 {
 exit;
 }
 }
}

void Main()
{
 SendPulseAndWaitAnswer(10, 2s);
 SendPulseAndWaitAnswer(100, 20ms);
 SendPulseAndWaitAnswer(10, 2s);
}

The following example shows a function returning a value based on a
parameter:

var ComputeSlotPosition(Index)
{

return Index * 85;

}

TimerA = ComputeSlotPosition(CounterB);
Language Reference 49

50

U
se

r
G

u
id

e
 4.6 Function Calls
The parameters of functions calls are explicit. The syntax for specifying
parameters values is param => value. The parameters order is thus not
relevant as the parameter is fully identified by its name. The examples
below shows a function with two parameters Param1 and Param2; the value
10 is assigned to Param1 and the value 20 is assigned to Param2:

SampleMacro(Param1 => 10, Param2 => 20);
SampleMacro(Param2 => 20, Param1 => 10);

When an instruction, a function has only one parameter its name can be
omitted. For example:

Sleep(Duration => 10us);

can also be written as:

Sleep(10us);

Parameters are optional when they have a default value. If the parameter
is not specified in the call, the default value is used. The example below
defines a macro with two parameters. Param1 is mandatory and Param2
has a default value of 0. Since Param2 is not specified in the call, the
value 0 will be used as default.

void SampleFunction(Param1, Param2 = 0)
{

Sleep(Param 1 + Param2);
}

void Main()
{

SampleFunction(Param1 => 10us);
}

Language Reference

E
lli

sy
s

U
S
B
 E

xp
lo

re
r

2
6
0
 G

en
er

at
o
r
4.7 Enumerations Declarations

Enumerations can be used to give names to known values.
The example below shows a script that defines several error codes.

enum ErrorCode
{
 NoError = 0,
 Timeout = 1,
 SequenceMismatch = 2,
 Unspecified = 3
}

The example below shows a script that declares a unique number for each
state of a state machine.

enum StateMachine
{
 Stopped,
 Paused,
 Running,
 Unspecified
}

void main()
{
 var currentState = GetMachineState();

 if(currentState == StateMachine.Unspecified)
 {
 currentState = StateMachine.Stopped;
 }

 SetMachineState(currentState);
}

Language Reference 51

52

U
se

r
G

u
id

e
 4.8 Namespaces Declarations
Namespaces can be used to isolate some portions of code to avoid name
collision in big scripts.

The example below shows a script that declares a namespace and then
use functions defined by this namespace.

namespace UtilityFunctions
{
 void WaitSpecialEvent(Event, Timeout)
 { /* ... */ }

 void GenerateSpecialEvent(Event, Param = 0)
 { /* ... */ }
}

void WaitAndGenerate(Event)
{
 UtilityFunctions.WaitSpecialEvent(Event, 50ms);
 UtilityFunctions.GenerateSpecialEvent(Event);
}

using UtilityFunctions;

void main()
{
 WaitSpecialEvent(Event, 200ms);
 WaitAndGenerate(Event);
}

The example below shows a scripts that declare two namespaces, each
with a function that has the same name.

namespace TimingFunctions
{
 void WaitAnswer(Timeout) { /* ... */ }
}

namespace ProtocolFunctions
{
 void WaitAnswer(AnswerId) { /* ... */ }
}

void main()
{
 TimingFunctions.WaitAnswer(400ms);
 ProtocolFunctions.WaitAnswer(Handshake);
}

Language Reference

E
lli

sy
s

U
S
B
 E

xp
lo

re
r

2
6
0
 G

en
er

at
o
r
4.9 Buffer Usage

The hardware contains a buffer of 8192 bytes available for memory
comparison and copy operations. It can be accessed with the Buffer
keyword for reading as well as for writing. Example:

Buffer[0 to 3] = [0, 1, 2, 3];
Buffer[0 for 4] = CounterB;
CounterA = Buffer[10 for 4];

The last received packet can be accessed with the LastRxPacket
keyword. LastRxPacket is read only. Example:

Buffer[2 to CounterB] = LastRxPacket[2 to
CounterB];
CounterC = LastRxPacket[5];

4.10 Counters
Counters are useful for example to count errors, special conditions, etc.
Several counters are available in the generator, namely CounterA to
CounterH. The value of the counters is indicated in the Registers window.

The example below shows a script that repetitively sends a pulse on the
output BNC connector and waits for a rising edge on the input BNC
connector. If the rising edge is not detected within 500 milliseconds the
script increments CounterA.

repeat(1000)
{
 GenerateTriggerOut(Output => BncOut,
 Mode => PulseHigh);

 WaitTriggerIn(Input => BncIn,
 Condition => RisingEdge,
 Timeout => 500ms);

 if(TimeoutOccurred)
 {
 // Keep the error count in Counter
 CounterA++;
 }
}

Language Reference 53

54

U
se

r
G

u
id

e
 4.11 Timers
Timers are useful for example to measure or generate precise timing
sequences. Several timers are available in the generator. Timers can be
started, stopped or modified. It is possible to wait until a timer reaches a
specified value or to change the current value of a timer.

The example below shows a script that measure the duration of a trigger
pulse and generates one that lasts three times this duration.

Timer0 = 0;
Timer1 = 0;

WaitTriggerIn(Input => BncIn,
 Condition => RisingEdge);

StartTimer(0);

GenerateTriggerOut(Output => BncOut,
 Mode => ForceHigh);

WaitTriggerIn(Input => BncIn,
 Condition => FallingEdge);

StartTimer(1);
StopTimer(0);

WaitTimer(Index => 1,
 TargetValue => Timer0 * 2,
 TimingRespect => Hard);

GenerateTriggerOut(Output => BncOut,
 Mode => ForceLow);

StopTimer(1);
Language Reference

E
lli

sy
s

U
S
B
 E

xp
lo

re
r

2
6
0
 G

en
er

at
o
r
4.12 Stop Keyword

The stop keyword stops the execution of the generator. This is useful for
example to stop the generator when a required condition is not met.

WaitTriggerIn(Input => BncIn,
 Condition => FallingEdge,
 Timeout => 100ms);

if(TimeoutOccurred)
{
 // Condition not met: stop execution
 stop;
}

4.13 Breakpoint Keyword
The breakpoint keyword breaks the execution of the generator. The
execution can be resumed by the user from the breakpoint.

WaitTriggerIn(Input => BncIn,
 Condition => FallingEdge,
 Timeout => 100ms);

if(TimeoutOccurred)
{
 // Condition not met: break execution
 breakpoint;
}

4.14 If Statement
The if statement executes instructions conditionally depending on a
condition. Conditions are described in 4.21, Conditional expressions, on
page 61.

The example below shows a script that increments CounterA if the button
is pressed, and CounterB otherwise. When CounterA reaches 10, CounterB
is reset to 0.

WaitButton(Index => 0,
 Timeout => 0ms,
 Condition => HighLevel);

if(MatchOccurred)
{
 CounterA++;
}
Language Reference 55

56

U
se

r
G

u
id

e
 else
{
 CounterB++;
}

if(CounterA >= 10)
{
 CounterB = 0;
}

4.15 Switch Statement
The switch statement executes instructions conditionally depending on
the value of the specified variable.

The example below shows a script that increments CounterA if the value of
the variable is 0, increments CounterB if the value is 1 and resets both to
zero in other cases.

switch(CounterC)
{
 case 0:
 CounterA++;
 break;

 case 1:
 CounterB++;
 break;

 default:
 CounterA = 0;
 CounterB = 0;
 break;
}

Language Reference

E
lli

sy
s

U
S
B
 E

xp
lo

re
r

2
6
0
 G

en
er

at
o
r
4.16 Repeat Statement

The repeat statement executes instructions the specified count of times.
A repeat statement can be stopped with the exit keyword. Up to four
repeat statements can be imbricated.

The example below shows a script that pulses high the state of the output
BNC connector for 200 milliseconds every seconds. It does this 10 times.

repeat(10)
{
 GenerateTriggerOut(Output => BncOut,
 Mode => ForceHigh);

 Sleep(200ms);

 GenerateTriggerOut(Output => BncOut,
 Mode => ForceLow);

 Sleep(800ms);
}

4.17 While Statement
The while statement executes instructions as long as a specified condition
is true. The condition is checked before the instruction is executed. A
while statement can be stopped with the exit keyword. Up to four while
statements can be imbricated.

The example below shows a script that toggles the state of the output
BNC connector every 200 milliseconds until the input BNC connector
presents a high logic level.

while(true)
{
 GenerateTriggerOut(Output => BncOut,
 Mode => Toggle);

 WaitTriggerIn(Input => BncIn,
 Condition => HighLevel,
 Timeout => 200ms);

 if(MatchOccurred) { exit; }
}

Language Reference 57

58

U
se

r
G

u
id

e
 4.18 Do While Statement
The do while statement executes instructions as long as a specified
condition is true. The condition is checked after the instruction is
executed. A while statement can be stopped with the exit keyword. Up to
four do while statements can be imbricated.

The example below shows a script that generates a pulse on the output
BNC connector until the input BNC connectors presents a high logic level.

do
{
 GenerateTriggerOut(Output => BncOut,
 Mode => PulseHigh);

 WaitTriggerIn(Input => BncIn,
 Condition => LowLevel,
 Timeout => 0);

} while(MatchOccurred);

4.19 For Statement
The for statement executes instructions in a loop a certain number of
times. A for statement can be stopped with the exit keyword. Up to four
for statements can be imbricated.

The example below shows a script that generates 20 pulses on the output
BNC connector.

for(var i=0; i<20; i++)
{
 GenerateTriggerOut(Output => BncOut,
 Mode => PulseHigh);
}

Language Reference

E
lli

sy
s

U
S
B
 E

xp
lo

re
r

2
6
0
 G

en
er

at
o
r
4.20 Mathematical expressions

The Ellisys script language supports the following mathematical
operators: +, -, *, /, %, &, |, ^, >> and <<.

The examples below show how to use these operators and how to
combine them. In all these examples, a must be a variable; b and c can
be variables or a literals.

The following example assigns the value 20 to a:

a = 20;

The following example assigns the value 0xAB12 (43,794 in decimal) to a:

a = 0xAB12;

The following example adds the value of b to the value of c and assigns
the result to a:

a = b + c;

The following example subtract the value of c from the value of b and
assigns the result to a:

a = b - c;

The following example multiplies the value of b with the value of c and
assigns the result to a:

a = b * c;

The following example divides the value of b by the value of c and assigns
the result to a:

a = b / c;

The following example divides the value of b with the value of c and
assigns the rest of the integer division to a:

a = b % c;

The following example performs a mathematical AND operation between
the value of b and the value of c and assigns the result to a:

a = b & c;
Language Reference 59

60

U
se

r
G

u
id

e
 The following example performs a mathematical OR operation between
the value of b and the value of c and assigns the result to a:

a = b | c;

The following example performs a mathematical XOR operation between
the value of b and the value of c and assigns the result to a:

a = b ^ c;

The following example performs a right shift operation between the value
of b and the value of c and assigns the result to a:

a = b >> c;

The following example performs a left shift operation between the value
of b and the value of c and assigns the result to a:

a = b << c;

The following example demonstrates how to combine expressions to
produce more complex results:

a = ((b & 0x0F) * 12) >> (c + 1);
Language Reference

E
lli

sy
s

U
S
B
 E

xp
lo

re
r

2
6
0
 G

en
er

at
o
r
4.21 Conditional expressions

The conditions that can be tested are MatchOccurred and TimeoutOccured.
These two flags are set by instructions that wait specific conditions.

Conditional expressions can be used as condition of execution or
termination with several statements, including if, while and do while.

The following example executes the specified code if a equals b:

if(a == b) { /* insert code here */ }

The following example executes the specified code if a is different from b:

if(a != b) { /* insert code here */ }

The following example executes the specified code if a is greater than b:

if(a > b) { /* insert code here */ }

The following example executes the specified code if a is greater than or
equal to b:

if(a >= b) { /* insert code here */ }

The following example executes the specified code if a is less than b:

if(a < b) { /* insert code here */ }

The following example executes the specified code if a is less than or
equal to b:

if(a <= b) { /* insert code here */ }
Language Reference 61

62

U
se

r
G

u
id

e

Language Reference

E
lli

sy
s

U
S
B
 E

xp
lo

re
r

2
6
0
 G

en
er

at
o
r
5 Instruction Set Reference

The Ellisys USB Explorer 260 Generator includes several specialized
instructions. These instructions are divided into six distinct categories:

• Timing operations

• Buffer operations

• Trigger operations

• Link-oriented operations

• Packet-oriented operations

• Host-oriented operations

5.1 Sleep Instruction
The Sleep instruction waits a precise duration which can be specified in
several units. The duration can be specified in units of time (seconds,
milliseconds, microseconds and nanoseconds) or in 60 MHz clock cycles.

Example
Sleep (Duration => 1.5ms);
Sleep (1.5ms);

Parameter List

Duration

Description Amount of time to wait.

Type Time expressed in 60 MHz clock cycles or seconds.

Range 0 to 4,294,967,295 clock cycles or 0 to 71 seconds with a
precision of 16.66 nanoseconds.

Default No default value; this parameter is mandatory.

Example 1.32ms means 1,320 microseconds or 79,200 clock cycles.
620ns will be floored down to 37 clock cycles.
3960clk means 3,960 clock cycles or 66 microseconds.
1000 (without unity) is not allowed and will generate a warning.
Instruction Set Reference 63

64

U
se

r
G

u
id

e
 5.2 StartCountdown Instruction
The StartCountdown instruction starts a countdown timer in the generator.
Two countdown timers can run simultaneously.

Example
StartCountdown (Index => 0, Duration => 65538us);
StartCountdown (65538us);

Parameter List

Index

Description Index of the countdown timer.

Range 0 to 2.

Default 0

Example 0 to use the countdown timer with index 0.
1 to use the countdown timer with index 1.

Duration

Description Amount of time to wait.

Type Time expressed in 60 MHz clock cycles or seconds.

Range 0 to 4,294,967,295 clock cycles or 0 to 71 seconds with a
precision of 16.66 nanoseconds.

Default No default value; this parameter is mandatory.

Example 1.32ms means 1,320 microseconds or 79,200 clock cycles.
620ns will be floored down to 37 clock cycles.
3960clk means 3,960 clock cycles or 66 microseconds.
1000 (without unity) is not allowed and will generate a warning.
Instruction Set Reference

E
lli

sy
s

U
S
B
 E

xp
lo

re
r

2
6
0
 G

en
er

at
o
r
5.3 WaitCountdownReached Instruction

The WaitCountdownReached instruction waits the countdown timer reaches
its nominal value.

Example
WaitCountdownReached(

Index => 0,
Timeout => 500ms,
TimingRespect => Hard);

Parameter List

Index

Description Index of the countdown timer.

Range 0 to 2.

Default 0

Example 0 to use the countdown timer with index 0.
1 to use the countdown timer with index 1.

Timeout

Description Timeout after which the instruction is aborted.

Type Time expressed in 60 MHz clock cycles or seconds.

Range 0 to 4,294,967,295 clock cycles or 0 to 71 seconds with a
precision of 16.66 nanoseconds.

Default No default value; this parameter is mandatory.

Example 1.32ms means 1,320 microseconds or 79,200 clock cycles.
620ns will be floored down to 37 clock cycles.
3960clk means 3,960 clock cycles or 66 microseconds.
1000 (without unity) is not allowed and will generate a warning.
Instruction Set Reference 65

66

U
se

r
G

u
id

e

5.4 StartTimer Instruction
The StartTimer instruction starts the specified timer.

Example
StartTimer(1);

Parameter List

TimingRespect

Description Specifies if the processor breaks if the countdown value was
already reached at the time the wait was called.

Range Soft or Hard.

Default Soft

Example Soft to continue even if the countdown value was already
reached.
Hard to break script execution if the countdown value was
exceeded. This value helps detecting timing errors in scripts.

Index

Description Specifies the index of the timer to start.

Type 0 to 2.

Default No default value; this parameter is mandatory.

Example 0 will use timer 0.
Instruction Set Reference

E
lli

sy
s

U
S
B
 E

xp
lo

re
r

2
6
0
 G

en
er

at
o
r
5.5 StopTimer Instruction

The StopTimer instruction stops the specified timer.

Example
StopTimer(2);

Parameter List

5.6 WaitTimer Instruction
The WaitTimer instruction waits until the specified timer reaches the
specified value.

Example
WaitTimer(

Index => 1,
TargetValue => 60s);

Parameter List

Index

Description Specifies the index of the timer to stop.

Type 0 to 2.

Default No default value; this parameter is mandatory.

Example 0 will use timer 0.

Index

Description Specifies the index of the timer to wait on.

Type 0 to 2.

Default No default value; this parameter is mandatory.

Example 0 will use timer 0.
Instruction Set Reference 67

68

U
se

r
G

u
id

e
 TargetValue

Description Specifies the target value to wait on.

Type 0 to 4,294,967,295 clock cycles or 0 to 71 seconds with a
precision of 16.66 nanoseconds.

Default No default value; this parameter is mandatory.

Example 10500 will match when the specified timer reaches value 10500.
200ms will match when the specified timer reaches value
12,000,000, which equals to 200ms at 60 MHz.

Timeout

Description Timeout after which the instruction is aborted.

Type Time expressed in 60 MHz clock cycles or seconds.

Range 0 to 4,294,967,295 clock cycles or 0 to 71 seconds with a
precision of 16.66 nanoseconds.

Default No default value; this parameter is mandatory.

Example 1.32ms means 1,320 microseconds or 79,200 clock cycles.
620ns will be floored down to 37 clock cycles.
3960clk means 3,960 clock cycles or 66 microseconds.
1000 (without unity) is not allowed and will generate a warning.

TimingRespect

Description Specifies if the processor breaks if the countdown value was
already reached at the time the wait was called.

Range Soft or Hard.

Default Soft

Example Soft to continue even if the countdown value was already
reached.
Hard to break script execution if the countdown value was
exceeded. This value helps detecting timing errors in scripts.
Instruction Set Reference

E
lli

sy
s

U
S
B
 E

xp
lo

re
r

2
6
0
 G

en
er

at
o
r
5.7 CopyMemory Instruction

The CopyMemory instruction copies bytes from a location of the user buffer
to another location.

Example
CopyMemory(

Src => [0x00, 0x00],
Dst => Buffer,
DstOffset => 200);

CopyMemory(

Src => Buffer,
SrcOffset => 0,
Dst => Buffer,
DstOffset => 200,
Length => 2);

CopyMemory(

Src => LastRxPacket,
SrcOffset => 15,
Dst => Buffer,
DstOffset => 15,
Length => 60);

Parameter List

Src

Description The source data to copy to the destination.

Type Inline bytes (max 8192 bytes) or Buffer or LastRxPacket.

Default No default value; this parameter is mandatory.

Example [0x00, 0x09, 0x00, 0xE0, 0x00] to copy these bytes.
Buffer to copy bytes from the user buffer.
Instruction Set Reference 69

70

U
se

r
G

u
id

e
 SrcOffset

Description Offset in the source data of the first byte to use.

Range 0 to 8191.

Default 0

Example 0 will copy from the beginning of the PHY header when
LastRxPacket is specified or from offset 0 of the user buffer
when Buffer is used.
5 will copy from the beginning of the MAC header when
LastRxPacket is specified or from offset 5 of the user buffer
when Buffer is used.
15 will copy from the beginning of the payload when
LastRxPacket is specified or from offset 15 of the user buffer
when Buffer is used.

Dst

Description The destination where the source will be copied.

Type Buffer

Default No default value; this parameter is mandatory.

Example Buffer is the only acceptable value.

DstOffset

Description Offset in the destination buffer of the first data byte to copy.

Range 0 to 8191.

Default No default value; this parameter is mandatory.

Example 0 will copy source bytes at offset 0 of the destination buffer.
22 will copy source bytes at offset 22 of the destination buffer.

Length

Description Length of the data to copy.

Range 0 to 8192.

Default No default value; this parameter is mandatory.

Example 5 will copy 5 bytes.
Instruction Set Reference

E
lli

sy
s

U
S
B
 E

xp
lo

re
r

2
6
0
 G

en
er

at
o
r
5.8 CompareMemory Instruction

The CompareMemory instruction compares bytes from a location of the user
buffer to another.

Example
CompareMemory(

Src => Buffer,
SrcOffset => 60,
Dst => [0x00, 0x00]);

CompareMemory(

Src => Buffer,
SrcOffset => 0,
Dst => Buffer,
DstOffset => 200,
Length => 40);

CompareMemory(

Src => LastRxPacket,
SrcOffset => 5,
Dst => Buffer,
DstOffset => 5,
Length => 10);

Parameter List

Src

Description The first sequence of bytes to compare.

Type Inline bytes (max 8192 bytes) or Buffer or LastRxPacket.

Default No default value; this parameter is mandatory.

Example [0x00, 0x09, 0x00, 0xE0, 0x00] to compare the
specified bytes with the bytes specified in Dst.
Buffer to compare bytes in the user buffer with the bytes
specified in Dst.
Instruction Set Reference 71

72

U
se

r
G

u
id

e
 SrcOffset

Description Offset in the source data of the first byte to compare.

Range 0 to 8191.

Default 0

Example 0 will compare from the beginning of the PHY header when
LastRxPacket is specified or from offset 0 of the user buffer
when Buffer is used.
5 will compare from the beginning of the MAC header when
LastRxPacket is specified or from offset 5 of the user buffer
when Buffer is used.
15 will compare from the beginning of the payload when
LastRxPacket is specified or from offset 15 of the user buffer
when Buffer is used.

Dst

Description The second sequence of bytes to compare.

Type Buffer or LastRxPacket.

Default No default value; this parameter is mandatory.

Example Buffer to compare bytes defined in Src with data in the user
buffer.
LastRxPacket to compare bytes defined in Src with data
contained in the last received packet.

DstOffset

Description Offset in the destination buffer of the first data byte to compare.

Range 0 to 2047.

Default No default value; this parameter is mandatory.

Example 0 will compare from offset 0 of the user buffer when Buffer or
LastRxPacket is used.
200 will compare from offset 200 of the user buffer when
Buffer or LastRxPacket is used.
Instruction Set Reference

E
lli

sy
s

U
S
B
 E

xp
lo

re
r

2
6
0
 G

en
er

at
o
r
Mask

Description Mask to apply on each byte of the data to compare. The mask is
applied with an AND operator.

Type Inline bytes (max 8192 bytes).

Default 0xFF for all bytes specified in Data.

Example [0x0F, 0x0F, 0xFF, 0xF0, 0xFF] will use these bytes
for the mask.

Length

Description Length of the data to compare.

Range 0 to 2047.

Default No default value; this parameter is mandatory.

Example 5 will copy 5 bytes.
Instruction Set Reference 73

74

U
se

r
G

u
id

e
 5.9 WaitButtonPressed Instruction
The WaitButtonPressed instruction waits on user action on the specified
button of the trigger board.

Example
WaitButtonPressed(

Index => 0,
Timeout => 10s);

Parameter List

Index

Description Selects the button to wait on.

Range 0 to 1.

Default No default value; this parameter is mandatory.

Example 0 will wait until Button0 is pressed on the trigger board.
1 will wait until Button1 is pressed on the trigger board.

Timeout

Description Timeout after which the instruction is aborted.

Type Time expressed in 60 MHz clock cycles or seconds.

Range 0 to 4,294,967,295 clock cycles or 0 to 71 seconds with a
precision of 16.66 nanoseconds.

Default No default value; this parameter is mandatory.

Example 1.32ms means 1,320 microseconds or 79,200 clock cycles.
620ns will be floored down to 37 clock cycles.
3960clk means 3,960 clock cycles or 66 microseconds.
1000 (without unity) is not allowed and will generate a warning.
Instruction Set Reference

E
lli

sy
s

U
S
B
 E

xp
lo

re
r

2
6
0
 G

en
er

at
o
r
5.10 WaitTriggerIn Instruction

The WaitTriggerIn instruction waits on the specified input of the trigger
board.

Example
WaitTriggerIn(

Input => BncIn,
Condition => RisingEdge,
Timeout => 5s);

Parameter List

Input

Description Selects the input on which the condition should be waited on.

Range Any, BncIn, DigitalIn0 to DigitalIn3.

Default No default value; this parameter is mandatory.

Example Any waits on any inputs of the trigger board.
BncIn waits on the BNC input of the trigger board.

Condition

Description Specifies the trigger condition.

Range RisingEdge, FallingEdge, HighLevel, LowLevel.

Default No default value; this parameter is mandatory.

Example RisingEdge waits on a rising edge condition.
HighLevel waits on a high level condition.
Instruction Set Reference 75

76

U
se

r
G

u
id

e
 Timeout

Description Timeout after which the instruction is aborted.

Type Time expressed in 60 MHz clock cycles or seconds.

Range 0 to 4,294,967,295 clock cycles or 0 to 71 seconds with a
precision of 16.66 nanoseconds.

Default No default value; this parameter is mandatory.

Example 1.32ms means 1,320 microseconds or 79,200 clock cycles.
620ns will be floored down to 37 clock cycles.
3960clk means 3,960 clock cycles or 66 microseconds.
1000 (without unity) is not allowed and will generate a warning.
Instruction Set Reference

E
lli

sy
s

U
S
B
 E

xp
lo

re
r

2
6
0
 G

en
er

at
o
r
5.11 GenerateTriggerOut Instruction

The GenerateTriggerOut instruction generates a condition on the specified
output of the trigger board.

Example
GenerateTriggerOut(

Output => BncOut,
Mode => PulseHigh);

Parameter List

Output

Description Selects the output to generate the trigger on.

Range All, BncOut, DigitalOut0 to DigitalOut3.

Default No default value; this parameter is mandatory.

Example All generates the condition on all outputs of the trigger board.
BncOut generates the condition on the BNC output.

Mode

Description Specifies the trigger mode.

Range PulseHigh, PulseLow, ForceHigh, ForceLow, Toggle.

Default No default value; this parameter is mandatory.

Example PulseHigh generates a positive pulse on the output.
ForceLow forces a low-level on the output.
Toggle inverts the current level of the output.
Instruction Set Reference 77

78

U
se

r
G

u
id

e
 5.12 ConfigureGenerator Instruction
The ConfigureGenerator instruction configures the generator in host or
device mode.

Example
ConfigureGenerator(

Mode => Device,
Speed => HighSpeed);

ConfigureGenerator(

Mode => Host,
Speed => Chirp);

Parameter List

Mode

Description Specifies the generator mode.

Range Host, Device or ErrorInjection.

Default No default value; this parameter is mandatory.

Example Host will configure the hardware for Host emulation.
Device will configure the hardware for Device emulation.
ErrorInjection will configure the hardware for error injection.

Speed

Description Specifies the link speed.

Range LowSpeed, FullSpeed, HighSpeed or Chirp.

Default No default value; this parameter is mandatory.

Example LowSpeed will configure the link for low speed (1.5 Mbit/s).
FullSpeed will configure the link for full speed (12 Mbit/s).
HighSpeed will configure the link for high speed (480 Mbit/s).
Chirp will configure the link for high speed chirp.
Instruction Set Reference

E
lli

sy
s

U
S
B
 E

xp
lo

re
r

2
6
0
 G

en
er

at
o
r

5.13 ForceLinesState Instruction
The ForceLinesState instruction sets the link lines to the specified state.

Example
ForceLinesState(J);
ForceLinesState(State => SE0);

Parameter List

5.14 ReleaseLinesState Instruction
The ReleaseLinesState instruction releases the link lines state.

Example
ReleaseLinesState();

Parameter List
This instruction does not take any parameters.

Results are undefined if Mode specifies ErrorInjection and
Speed specifies Chirp.

State

Description Specifies the state to be set on the link.

Range SE0, J or K.

Default No default value; this parameter is mandatory.

Example SE0 will wait until a SE0 state appears on the link.
J will wait until a J state appears on the link.
K will wait until a J state appears on the link.
Instruction Set Reference 79

80

U
se

r
G

u
id

e
 5.15 WaitLinesState Instruction
The WaitLinesState instruction waits for the specified lines state.

Example
WaitLinesState(

State => J,
Timeout => 20us);

Parameter List

State

Description Specifies the state to wait for.

Range SE0, J or K.

Default No default value; this parameter is mandatory.

Example SE0 will wait until a SE0 state appears on the link.
J will wait until a J state appears on the link.
K will wait until a J state appears on the link.

Timeout

Description Timeout after which the instruction is aborted.

Type Time expressed in 60 MHz clock cycles or seconds.

Range 0 to 4,294,967,295 clock cycles or 0 to 71 seconds with a
precision of 16.66 nanoseconds.

Default Waits for ever if not specified.

Example 1.32ms means 1,320 microseconds or 79,200 clock cycles.
620ns will be floored down to 37 clock cycles.
3960clk means 3,960 clock cycles or 66 microseconds.
1000 (without unity) is not allowed and will generate a warning.
Instruction Set Reference

E
lli

sy
s

U
S
B
 E

xp
lo

re
r

2
6
0
 G

en
er

at
o
r
5.16 SendPacket Instruction

The SendPacket instruction sends a raw USB packet using the mode and
speed specified with the ConfigureGenerator instruction.

Example
SendPacket(

RawData => [0x69, 0x81, 0x58],
Interval => 17.554us,
ComputeFcs => false);

SendPacket(

RawData => Buffer,
RawDataOffset => 20,
RawDataLength => 12,
Spacing => 1us,
ComputeFcs => true);

Parameter List

RawData

Description Raw data of the packet to send including PID, payload and CRC.

Type Inline bytes (min 1 byte, max 8191 bytes) or Buffer.

Default No default value; this parameter is mandatory.

Example [0x69, 0x81, 0x58] to use these bytes for the instruction.
Buffer to use bytes from the user buffer.

RawDataLength

Description Length of the Buffer.

Range 1 to 8191.

Default No default value; this parameter is mandatory when Buffer is
used in RawData. This parameter cannot be used when inline
bytes are specified in RawData.

Example 1 will sent a packet with a length of one byte.
500 will sent a packet with a length of 500 bytes.
Instruction Set Reference 81

82

U
se

r
G

u
id

e
 RawDataOffset

Description Offset of the data bytes in the Buffer.

Range 0 to 8191.

Default No default value; this parameter is mandatory when Buffer is
used in RawData. This parameter cannot be used when inline
bytes are specified in RawData.

Example 0 will send a packet from offset 0 in the Buffer.
1024 will send a packet from offset 1024 in the Buffer.

PrefixPid

Description PID to be added to the specified data.

Range 0 to 255.

Default No default value; the packet will not be prefixed with a PID if this
parameter is not specified.

Example 0xC3 will send a DATA0 PID.

Interval

Description Delay between the beginning of this instruction and the
beginning of the next instruction.

Type Time expressed in 60 MHz clock cycles or seconds.

Range 0 to 4,294,967,295 clock cycles or 0 to 71 seconds with a
precision of 16.66 nanoseconds.

Default 0.

Example 1.32ms means 1,320 microseconds or 79,200 clock cycles.
620ns will be floored down to 37 clock cycles.
3960clk means 3,960 clock cycles or 66 microseconds.
1000 (without unity) is not allowed and will generate a warning.
Instruction Set Reference

E
lli

sy
s

U
S
B
 E

xp
lo

re
r

2
6
0
 G

en
er

at
o
r
Spacing

Description Delay between the end of this instruction and the beginning of
the next instruction.

Type Time expressed in 60 MHz clock cycles or seconds.

Range 0 to 4,294,967,295 clock cycles or 0 to 71 seconds with a
precision of 16.66 nanoseconds.

Default 0.

Example 1.32ms means 1,320 microseconds or 79,200 clock cycles.
620ns will be floored down to 37 clock cycles.
3960clk means 3,960 clock cycles or 66 microseconds.
1000 (without unity) is not allowed and will generate a warning.

ComputeCrc

Description Specifies if the CRC should be computed automatically by the
hardware instead of using the specified value.

Type Boolean (True or False).

Default False

Example True to replace the specified CRC bytes with the computed
CRC.
False to leave the specified CRC bytes as is.
Instruction Set Reference 83

84

U
se

r
G

u
id

e
 5.17 WaitPacket Instruction
The WaitPacket instruction waits for a packet matching the specified
criteria.

Example
WaitPacket(

Timeout => 1ms,
MatchOnlyValidCrc => true);

Parameter List

MatchOnlyValidCrc

Description Specifies if the instruction will only match packets with a valid
CRC.

Type Boolean (True or False).

Default False

Example True will break the script if a match occurs and the FCS of the
received packet is valid.
False will break the script if a match occurs independently of
the FCS value of the received packet.

StoreRxPacket

Description Specifies if the instruction will store the received packet into the
LastRxPacket special register.

Type Boolean (True or False).

Default True

Example True will store the received packet into the LastRxPacket
special register.
False will not store the received packet.
Instruction Set Reference

E
lli

sy
s

U
S
B
 E

xp
lo

re
r

2
6
0
 G

en
er

at
o
r
Timeout

Description Timeout after which the instruction is aborted.

Type Time expressed in 60 MHz clock cycles or seconds.

Range 0 to 4,294,967,295 clock cycles or 0 to 71 seconds with a
precision of 16.66 nanoseconds.

Default Waits for ever if not specified.

Example 1.32ms means 1,320 microseconds or 79,200 clock cycles.
620ns will be floored down to 37 clock cycles.
3960clk means 3,960 clock cycles or 66 microseconds.
1000 (without unity) is not allowed and will generate a warning.
Instruction Set Reference 85

86

U
se

r
G

u
id

e
 5.18 WaitTokenPacket Instruction
The WaitTokenPacket instruction waits for a token packet matching the
specified criteria.

Example
WaitTokenPacket(

SetupPid => True,
DeviceAddress => DevAddr,
EndpointNumber => 0,
Timeout => 100ms,
MatchOnlyValidCrc => true);

Parameter List

OutPid

Description Specifies if a OUT token packet will match.

Type Boolean (True or False).

Default False

Example True will match OUT tokens.
False will not match OUT tokens.

InPid

Description Specifies if a IN token packet will match.

Type Boolean (True or False).

Default False

Example True will match IN tokens.
False will not match IN tokens.
Instruction Set Reference

E
lli

sy
s

U
S
B
 E

xp
lo

re
r

2
6
0
 G

en
er

at
o
r
SetupPid

Description Specifies if a SETUP token packet will match.

Type Boolean (True or False).

Default False

Example True will match SETUP tokens.
False will not match SETUP tokens.

PingPid

Description Specifies if a PING token packet will match.

Type Boolean (True or False).

Default False

Example True will match PING tokens.
False will not match PING tokens.

ExtPid

Description Specifies if an EXT token packet will match.

Type Boolean (True or False).

Default False

Example True will match EXT tokens.
False will not match EXT tokens.

DeviceAddress

Description Specifies the device address to match.

Range 0 to 127.

Default Match all device addresses.

Example 4 will match the specified tokens only if they are sent to device
address 4.
0 will match the specified tokens only if they are sent to the
default device address.
Instruction Set Reference 87

88

U
se

r
G

u
id

e
 EndpointNumber

Description Specifies the endpoint number to match.

Range 0 to 15.

Default Match all endpoint numbers.

Example 2 will match the specified tokens only if they are sent to endpoint
number 2.
0 will match the specified tokens only if they are sent to the
default control endpoint number.

MatchOnlyValidCrc

Description Specifies if the instruction will only match packets with a valid
CRC.

Type Boolean (True or False).

Default False

Example True will match only if the FCS of the received packet is valid.
False will match all packets independently of their FCS value.

Timeout

Description Timeout after which the instruction is aborted.

Type Time expressed in 60 MHz clock cycles or seconds.

Range 0 to 4,294,967,295 clock cycles or 0 to 71 seconds with a
precision of 16.66 nanoseconds.

Default Waits for ever if not specified.

Example 1.32ms means 1,320 microseconds or 79,200 clock cycles.
620ns will be floored down to 37 clock cycles.
3960clk means 3,960 clock cycles or 66 microseconds.
1000 (without unity) is not allowed and will generate a warning.
Instruction Set Reference

E
lli

sy
s

U
S
B
 E

xp
lo

re
r

2
6
0
 G

en
er

at
o
r
5.19 WaitDataPacket Instruction

The WaitDataPacket instruction waits for a data packet matching the
specified criteria.

Example
WaitDataPacket(

Data0 => CurrentDataToggle,
Data1 => !CurrentDataToggle,
Timeout => 1ms,
MatchOnlyValidCrc => true);

ParameterList

Data0Pid

Description Specifies if a DATA0 packet will match.

Type Boolean (True or False).

Default False

Example True will match DATA0 packets.
False will not match DATA0 packets.

Data1Pid

Description Specifies if a DATA1 packet will match.

Type Boolean (True or False).

Default False

Example True will match DATA1 packets.
False will not match DATA1 packets.

Data2Pid

Description Specifies if a DATA2 packet will match.

Type Boolean (True or False).

Default False

Example True will match DATA2 packets.
False will not match DATA2 packets.
Instruction Set Reference 89

90

U
se

r
G

u
id

e
 MDataPid

Description Specifies if a MDATA packet will match.

Type Boolean (True or False).

Default False

Example True will match MDATA packets.
False will not match MDATA packets.

MatchOnlyValidCrc

Description Specifies if the instruction will only match packets with a valid
CRC.

Type Boolean (True or False).

Default False

Example True will match only if the FCS of the received packet is valid.
False will match all packets independently of their FCS value.

Timeout

Description Timeout after which the instruction is aborted.

Type Time expressed in 60 MHz clock cycles or seconds.

Range 0 to 4,294,967,295 clock cycles or 0 to 71 seconds with a
precision of 16.66 nanoseconds.

Default Waits for ever if not specified.

Example 1.32ms means 1,320 microseconds or 79,200 clock cycles.
620ns will be floored down to 37 clock cycles.
3960clk means 3,960 clock cycles or 66 microseconds.
1000 (without unity) is not allowed and will generate a warning.
Instruction Set Reference

E
lli

sy
s

U
S
B
 E

xp
lo

re
r

2
6
0
 G

en
er

at
o
r
5.20 WaitHandshakePacket Instruction

The WaitHandshakePacket instruction waits for a handshake packet
matching the specified criteria.

Example
WaitHandshakePacket(

AckPid => True,
NakPid => True,
Timeout => 20ms,
MatchOnlyValidCrc => true);

Parameter List

AckPid

Description Specifies if an ACK handshake packet will match.

Type Boolean (True or False).

Default False

Example True will match ACK handshakes.
False will not match ACK handshakes.

NakPid

Description Specifies if a NAK handshake packet will match.

Type Boolean (True or False).

Default False

Example True will match NAK handshakes.
False will not match NAK handshakes.

StallPid

Description Specifies if a STALL handshake packet will match.

Type Boolean (True or False).

Default False

Example True will match STALL handshakes.
False will not match STALL handshakes.
Instruction Set Reference 91

92

U
se

r
G

u
id

e
 NyetPid

Description Specifies if a NYET handshake packet will match.

Type Boolean (True or False).

Default False

Example True will match NYET handshakes.
False will not match NYET handshakes.

ErrPid

Description Specifies if an ERR handshake packet will match.

Type Boolean (True or False).

Default False

Example True will match ERR handshakes.
False will not match ERR handshakes.

Timeout

Description Timeout after which the instruction is aborted.

Type Time expressed in 60 MHz clock cycles or seconds.

Range 0 to 4,294,967,295 clock cycles or 0 to 71 seconds with a
precision of 16.66 nanoseconds.

Default Waits for ever if not specified.

Example 1.32ms means 1,320 microseconds or 79,200 clock cycles.
620ns will be floored down to 37 clock cycles.
3960clk means 3,960 clock cycles or 66 microseconds.
1000 (without unity) is not allowed and will generate a warning.
Instruction Set Reference

E
lli

sy
s

U
S
B
 E

xp
lo

re
r

2
6
0
 G

en
er

at
o
r
5.21 WaitAndSendPacket Instruction

The WaitAndSendPacket instruction waits for a packet matching the
specified criteria. If the expected packet is received the instruction will
send the specified packet.

Example

SendPacket(
RawData => Buffer,
RawDataOffset => TokenPacketBufferOffset,
RawDataLength => TokenPacketSize,
ComputeCrc => True);

WaitAndSendPacket(
RxTimeout => TransactionTimeout,
RxMatchOnlyValidCrc => True,
TxRawData => [pidACK],
SendIfData0Pid => True,
SendIfData1Pid => True);

Parameter List

RxDeviceAddress

Description Specifies the device address to match.

Range 0 to 127.

Default Match all device addresses.

Example 4 will match the specified tokens only if they are sent to device
address 4.
0 will match the specified tokens only if they are sent to the
default device address.
Instruction Set Reference 93

94

U
se

r
G

u
id

e
 RxEndpointNumber

Description Specifies the endpoint number to match.

Range 0 to 15.

Default Match all endpoint numbers.

Example 2 will match the specified tokens only if they are sent to endpoint
number 2.
0 will match the specified tokens only if they are sent to the
default control endpoint number.

RxMatchOnlyValidCrc

Description Specifies if the instruction will only match packets with a valid
CRC.

Type Boolean (True or False).

Default False

Example True will match only if the FCS of the received packet is valid.
False will match all packets independently of their FCS value.

RxTimeout

Description Timeout after which the instruction is aborted.

Type Time expressed in 60 MHz clock cycles or seconds.

Range 0 to 4,294,967,295 clock cycles or 0 to 71 seconds with a
precision of 16.66 nanoseconds.

Default Waits for ever if not specified.

Example 1.32ms means 1,320 microseconds or 79,200 clock cycles.
620ns will be floored down to 37 clock cycles.
3960clk means 3,960 clock cycles or 66 microseconds.
1000 (without unity) is not allowed and will generate a warning.
Instruction Set Reference

E
lli

sy
s

U
S
B
 E

xp
lo

re
r

2
6
0
 G

en
er

at
o
r
TxRawData

Description Raw data of the packet to send including PID, payload and CRC.

Type Inline bytes (min 1 byte, max 8191 bytes) or Buffer.

Default No default value; this parameter is mandatory.

Example [0x69, 0x81, 0x58] to use these bytes for the instruction.
Buffer to use bytes from the user buffer.

TxRawDataLength

Description Length of the Buffer.

Range 1 to 8191.

Default No default value; this parameter is mandatory when Buffer is
used in RawData. This parameter cannot be used when inline
bytes are specified in RawData.

Example 1 will sent a packet with a length of one byte.
500 will sent a packet with a length of 500 bytes.

TxRawDataOffset

Description Offset of the data bytes in the Buffer.

Range 0 to 8191.

Default No default value; this parameter is mandatory when Buffer is
used in RawData. This parameter cannot be used when inline
bytes are specified in RawData.

Example 0 will send a packet from offset 0 in the Buffer.
1024 will send a packet from offset 1024 in the Buffer.

TxPrefixPid

Description PID to be added to the specified data.

Range 0 to 255.

Default No default value; the packet will not be prefixed with a PID if this
parameter is not specified.

Example 0xC3 will send a DATA0 PID.
Instruction Set Reference 95

96

U
se

r
G

u
id

e
 TxInterval

Description Delay between the beginning of this instruction and the
beginning of the next instruction.

Type Time expressed in 60 MHz clock cycles or seconds.

Range 0 to 4,294,967,295 clock cycles or 0 to 71 seconds with a
precision of 16.66 nanoseconds.

Default 0.

Example 1.32ms means 1,320 microseconds or 79,200 clock cycles.
620ns will be floored down to 37 clock cycles.
3960clk means 3,960 clock cycles or 66 microseconds.
1000 (without unity) is not allowed and will generate a warning.

TxSpacing

Description Delay between the end of this instruction and the beginning of
the next instruction.

Type Time expressed in 60 MHz clock cycles or seconds.

Range 0 to 4,294,967,295 clock cycles or 0 to 71 seconds with a
precision of 16.66 nanoseconds.

Default 0.

Example 1.32ms means 1,320 microseconds or 79,200 clock cycles.
620ns will be floored down to 37 clock cycles.
3960clk means 3,960 clock cycles or 66 microseconds.
1000 (without unity) is not allowed and will generate a warning.

TxComputeCrc

Description Specifies if the CRC should be computed automatically by the
hardware instead of using the specified value.

Type Boolean (True or False).

Default False

Example True to replace the specified CRC bytes with the computed
CRC.
False to leave the specified CRC bytes as is.
Instruction Set Reference

E
lli

sy
s

U
S
B
 E

xp
lo

re
r

2
6
0
 G

en
er

at
o
r
WaitOutPid

Description Specifies if a OUT token packet will match.

Type Boolean (True or False).

Default False

Example True will match OUT tokens.
False will not match OUT tokens.

WaitInPid

Description Specifies if a IN token packet will match.

Type Boolean (True or False).

Default False

Example True will match IN tokens.
False will not match IN tokens.

WaitSetupPid

Description Specifies if a SETUP token packet will match.

Type Boolean (True or False).

Default False

Example True will match SETUP tokens.
False will not match SETUP tokens.

WaitPingPid

Description Specifies if a PING token packet will match.

Type Boolean (True or False).

Default False

Example True will match PING tokens.
False will not match PING tokens.
Instruction Set Reference 97

98

U
se

r
G

u
id

e
 WaitExtPid

Description Specifies if an EXT token packet will match.

Type Boolean (True or False).

Default False

Example True will match EXT tokens.
False will not match EXT tokens.

WaitData0Pid

Description Specifies if a DATA0 packet will match.

Type Boolean (True or False).

Default False

Example True will match DATA0 packets.
False will not match DATA0 packets.

WaitData1Pid

Description Specifies if a DATA1 packet will match.

Type Boolean (True or False).

Default False

Example True will match DATA1 packets.
False will not match DATA1 packets.

WaitData2Pid

Description Specifies if a DATA2 packet will match.

Type Boolean (True or False).

Default False

Example True will match DATA2 packets.
False will not match DATA2 packets.
Instruction Set Reference

E
lli

sy
s

U
S
B
 E

xp
lo

re
r

2
6
0
 G

en
er

at
o
r
WaitMDataPid

Description Specifies if a MDATA packet will match.

Type Boolean (True or False).

Default False

Example True will match MDATA packets.
False will not match MDATA packets.

WaitAckPid

Description Specifies if an ACK handshake packet will match.

Type Boolean (True or False).

Default False

Example True will match ACK handshakes.
False will not match ACK handshakes.

WaitNakPid

Description Specifies if a NAK handshake packet will match.

Type Boolean (True or False).

Default False

Example True will match NAK handshakes.
False will not match NAK handshakes.

WaitStallPid

Description Specifies if a STALL handshake packet will match.

Type Boolean (True or False).

Default False

Example True will match STALL handshakes.
False will not match STALL handshakes.
Instruction Set Reference 99

100

U
se

r
G

u
id

e
 WaitNyetPid

Description Specifies if a NYET handshake packet will match.

Type Boolean (True or False).

Default False

Example True will match NYET handshakes.
False will not match NYET handshakes.

WaitErrPid

Description Specifies if an ERR handshake packet will match.

Type Boolean (True or False).

Default False

Example True will match ERR handshakes.
False will not match ERR handshakes.

SendIfOutPid

Description Specifies if the packet will be sent when a OUT PID is received.

Type Boolean (True or False).

Default False

Example True will send the packet when a OUT PID is received.
False will not send the packet when a OUT PID is received.

SendIfInPid

Description Specifies if the packet will be sent when a IN PID is received.

Type Boolean (True or False).

Default False

Example True will send the packet when a IN PID is received.
False will not send the packet when a IN PID is received.
Instruction Set Reference

E
lli

sy
s

U
S
B
 E

xp
lo

re
r

2
6
0
 G

en
er

at
o
r
SendIfSetupPid

Description Specifies if the packet will be sent when a SETUP PID is
received.

Type Boolean (True or False).

Default False

Example True will send the packet when a SETUP PID is received.
False will not send the packet when a SETUP PID is received.

SendIfPingPid

Description Specifies if the packet will be sent when a PING PID is received.

Type Boolean (True or False).

Default False

Example True will send the packet when a PING PID is received.
False will not send the packet when a PING PID is received.

SendIfExtPid

Description Specifies if the packet will be sent when a EXT PID is received.

Type Boolean (True or False).

Default False

Example True will send the packet when a EXT PID is received.
False will not send the packet when a EXT PID is received.

SendIfData0Pid

Description Specifies if the packet will be sent when a DATA0 PID is
received.

Type Boolean (True or False).

Default False

Example True will send the packet when a DATA0 PID is received.
False will not send the packet when a DATA0 PID is received.
Instruction Set Reference 101

102

U
se

r
G

u
id

e
 SendIfData1Pid

Description Specifies if the packet will be sent when a DATA1 PID is
received.

Type Boolean (True or False).

Default False

Example True will send the packet when a DATA1 PID is received.
False will not send the packet when a DATA1 PID is received.

SendIfData2Pid

Description Specifies if the packet will be sent when a DATA2 PID is
received.

Type Boolean (True or False).

Default False

Example True will send the packet when a DATA2 PID is received.
False will not send the packet when a DATA2 PID is received.

SendIfMDataPid

Description Specifies if the packet will be sent when a MDATA PID is
received.

Type Boolean (True or False).

Default False

Example True will send the packet when a MDATA PID is received.
False will not send the packet when a MDATA PID is received.

SendIfAckPid

Description Specifies if the packet will be sent when an ACK PID is received.

Type Boolean (True or False).

Default False

Example True will send the packet when an ACK PID is received.
False will not send the packet when an ACK PID is received.
Instruction Set Reference

E
lli

sy
s

U
S
B
 E

xp
lo

re
r

2
6
0
 G

en
er

at
o
r
SendIfNakPid

Description Specifies if the packet will be sent when a NAK PID is received.

Type Boolean (True or False).

Default False

Example True will send the packet when a NAK PID is received.
False will not send the packet when a NAK PID is received.

SendIfStallPid

Description Specifies if the packet will be sent when a STALL PID is
received.

Type Boolean (True or False).

Default False

Example True will send the packet when a STALL PID is received.
False will not send the packet when a STALL PID is received.

SendIfNyetPid

Description Specifies if the packet will be sent when a NYET PID is received.

Type Boolean (True or False).

Default False

Example True will send the packet when a NYET PID is received.
False will not send the packet when a NYET PID is received.

SendIfErrPid

Description Specifies if the packet will be sent when an ERR PID is received.

Type Boolean (True or False).

Default False

Example True will send the packet when an ERR PID is received.
False will not send the packet when an ERR PID is received.
Instruction Set Reference 103

104

U
se

r
G

u
id

e
 5.22 HostAutoGenerateSof Instruction
The HostAutoGenerateSof instruction starts or stops automatic Start-of-
Frame generation.

Example
HostAutoGenerateSof();
HostAutoGenerateSof(False);

Parameter List

Enable

Description Specifies if SOF are automatically generated.

Type Boolean (True or False).

Default True

Example True will automatically generate SOFs accordingly to the link
speed.
False will stop generating SOFs.
Instruction Set Reference

E
lli

sy
s

U
S
B
 E

xp
lo

re
r

2
6
0
 G

en
er

at
o
r
5.23 HostWaitGeneratedSof Instruction

The HostWaitGeneratedSof instruction synchronizes on a Start-of-Frame
automatically generated by the hardware.

Example
HostWaitGeneratedSof(

Timeout => 150us);

Parameter List

Timeout

Description Timeout after which the instruction is aborted.

Type Time expressed in 60 MHz clock cycles or seconds.

Range 0 to 4,294,967,295 clock cycles or 0 to 71 seconds with a
precision of 16.66 nanoseconds.

Default Waits for ever if not specified.

Example 1.32ms means 1,320 microseconds or 79,200 clock cycles.
620ns will be floored down to 37 clock cycles.
3960clk means 3,960 clock cycles or 66 microseconds.
1000 (without unity) is not allowed and will generate a warning.
Instruction Set Reference 105

106

U
se

r
G

u
id

e
 5.24 HostSetMaxTransactionDuration
Instruction

The HostSetMaxTransactionDuration instruction specifies the expected
time needed to send a transaction. The host processor will automatically
check if this time is large enough to fit the current frame. If not, the
transaction will be delayed until the beginning of the next frame.

Example
HostSetMaxTransactionDuration(Duration => 60us);

Parameter List

Duration

Description Computer duration of the transaction to be sent.

Type Time expressed in 60 MHz clock cycles or seconds.

Range 0 to 4,294,967,295 clock cycles or 0 to 71 seconds with a
precision of 16.66 nanoseconds.

Default No default value; this parameter is mandatory.

Example 0.66ms means 0,660 microseconds or 39,600 clock cycles.
620ns will be floored down to 37 clock cycles.
3960clk means 3,960 clock cycles or 66 microseconds.
1000 (without unity) is not allowed and will generate a warning.
Instruction Set Reference

E
lli

sy
s

U
S
B
 E

xp
lo

re
r

2
6
0
 G

en
er

at
o
r
5.25 HostResetMaxTransactionDuration

Instruction
The HostResetMaxTransactionDuration instruction resets the duration
specified by HostSetMaxTransactionDuration. After this instruction is
called, the processor will not delay a transaction if it is too close to a
frame boundary.

Example
HostResetMaxTransactionDuration();

Parameter List

This instruction does not take any parameters.
Instruction Set Reference 107

108

U
se

r
G

u
id

e

Instruction Set Reference

E
lli

sy
s

U
S
B
 E

xp
lo

re
r

2
6
0
 G

en
er

at
o
r
Frequently Asked Questions

Q The USB Explorer 260 transmits data using a USB 2.0
connection. Do I need a USB 2.0 host controller?

A Although the USB Explorer 260 can upload or download data on
a full speed USB 1.1 connection, Ellisys strongly recommends
that you connect it to a high speed USB 2.0 port to obtain
optimal performance. If you experience problems with the USB
Explorer 260, please ensure it is connected on a high speed
USB 2.0 enabled host controller before contacting technical
support.

Q I have got one host controller and I'd like to add a second
one. How can I achieve this?

A Installing a USB extension card is the easiest way to add a host
controller to your computer. Furthermore, nowadays most of
these extension cards are USB 2.0-compatible, which will enable
you to wholly gain from all your analyzer's power. Talk to your
local dealer about getting a USB 2.0 host controller card.

Q What is the maximum amount of data that I can generate
with the USB Explorer 260 Generator?

A The Generator uses its internal memory and hard disk to store
data to be generated. The maximum quantity of data is
therefore limited by the size of the internal memory.

Q Is it possible to upgrade the firmware of the USB
Explorer 260?

A Yes, the firmware is automatically updated with each new
software release. No user intervention is required; the latest
version of the firmware will be downloaded when you run the
most recent version of the software.
109

110

U
se

r
G

u
id

e

Need more help?

Go to the Ellisys web site and the following pages for the latest
information:

• Ellisys products page - Go to www.ellisys.com/products for the
latest product information and documentation.

• Application notes and white papers - Go to www.ellisys.com/
technology to find up-to-date information about the technology.

• Distributors - Go to www.ellisys.com/sales/ to find a list of Ellisys
distributors.

• Technical support - Go to www.ellisys.com/support/ to send a
question directly to the Ellisys support team.

Q What can I connect to the large connector on the back of
the product?

A The Auxiliary Equipment connector enables hardware
extensions. Several options are currently available and others
may be provided in the future. Please contact the Ellisys sales
team for more information.

Q I cannot run the software installation file, why?

A The software installation file requires Microsoft Windows
Installer 3.0 or higher, which is available for download from the
Microsoft web site.

Q I would like to connect the USB analyzer on a EHCI host
controller but it seems that it doesn't work. What can I
do?

A We took note that several EHCI drivers supplied by
manufacturers of USB 2.0 add-in cards could cause problem. We
strongly recommend the use of the Microsoft EHCI driver. You
can find more information on the installation of this driver at:
http://www.usbman.com/USB%202%20News.htm.

www.ellisys.com/products
www.ellisys.com/technology
www.ellisys.com/technology
www.ellisys.com/sales/
www.ellisys.com/support/

E
lli

sy
s

U
S
B
 E

xp
lo

re
r

2
6
0
 G

en
er

at
o
r
Glossary

This glossary lists terminology terms, abbreviations and acronyms that
you may come across while reading this User Guide and working with
Ellisys products.

ACK Acknowledgment code - Usually sent at the end of successful
transaction.

Addr Address - A field used to identify a given device.

Analyzer An instrument that capture traffic exchanged between devices.

API Application Programming Interface - A set of functions used by
a program to communicate with another.

Bandwidth The transmission capacity of an electronic pathway such as a
communication line, computer bus or computer channel.

BIN Binary - A representation of values that uses two symbols,
typically 0 and 1.

BER Bit Error Rate - The number of bits in error divided by the total
number of bits.

BNC Bayonet-Neill-Concelman - A connector for coaxial cables.

Bookmark A stored location for quick retrieval at a later date.

bps Bits per second - The measurement of the speed of data
transfer in communication systems.

Breakpoint The location in a program used to temporarily halt the program
for testing and debugging.

Code
Snippet

A small piece of program code usually used to guide the user.

CSV Comma-separated Values - A delimited data format that has
fields separated by the comma character and records
separated by new lines.

Dec Decimal - A representation of values that uses ten symbols,
typically 0 to 9.

DUT Device Under Test - A device that is being analyzed or
debugged.

EDX Ellisys index file - A file format used to index information found
in another file.
111

112

U
se

r
G

u
id

e
 ESE Ellisys settings file - A file format used to store user settings.

EUI-48 Unique identifier partly assigned by the IEEE RAC and partly
defined by the manufacturer of an equipment to uniquely
identify a networking device.

FCS Frame Check Sequence - A number added to a stream of
information that is used for error detection.

FIFO First In First Out - A storage method that retrieves first the item
stored for the longest time.

Gbps Gigabits per second - 1,073,741,824 bits per second.

GByte Gigabytes - 1,073,741,824 bytes.

Hex Hexadecimal - A representation of values that uses sixteen
symbols, typically 0 to 9 and A to F.

Handshake The resulting status of a data exchange.

Host A computer that acts as a source of information or signals.

IDE-type
connector

A type of electric connector usually attached to a flat ribbon
cable.

LED Light Emitting Diode - Display and lighting technology
commonly used on electronic equipment to indicate their
status.

Kbps Kilobits per second - 1,024 bits per second.

KByte Kilobytes - 1,024 bytes.

Loop A repetition within a program or script.

Mbps Megabits per second - 1,048,576 bits per second.

MByte Megabytes - 1,048,576 bytes.

NAK Negative Acknowledgement - An answer to a request that can
express anything but acceptance.

Packet A block of data that is transmitted over a communication link.

Payload The actual data in a packet minus all headers attached for
transport and minus all descriptive metadata.

Protocol The format and procedures that govern the transmitting and
receiving of data.

RX A communication abbreviation for receive.

Script A set of instructions that is executed without user interaction.

E
lli

sy
s

U
S
B
 E

xp
lo

re
r

2
6
0
 G

en
er

at
o
r
Snippet A small piece of program code that guides the user in how to

write a specific instruction.

SOF Start of Frame - A packet used for USB time synchronization.

TX A communication abbreviation for transmit.

USB Universal Serial Bus - An interface that connects between a
computer and peripheral devices (such as a keyboard, game
controllers, telephone, printer, etc.).

XML Extensible Markup Language - A reasonably human-legible
structured language aimed to facilitate the sharing of data
across heterogeneous information systems.
113

114

U
se

r
G

u
id

e

E
lli

sy
s

U
S
B
 E

xp
lo

re
r

2
6
0
 G

en
er

at
o
r
Index

B
back panel overview 19
bookmarks

code 40
enable 41
move to next or previous 41
remove 41
toggle 40

breakpoints 41
insert 41
remove 42

C
code

bookmarks 40
breakpoints 41
searching 37

compiling 42
connecting to the computer 19

E
editing

advanced 36
features 36
scripts 35

editor
script 25

errors
searching 42

F
files

opening 33
printing 34
saving 33
working with 33

front panel overview 18

G
generator

features 9
overview 9

I
installing 11

software 12
software prerequisites 11

instruction set reference 63
L
language reference 47

M
main menu 29

O
opening

files 33
panes 26

organizing
panes 26

output pane 25
overview

product 9
P
panes

close 26
default 25
hide 26
opening 26
organizing 26
output 25
register 25
window placer 26

printing
files 34

product
main features 9
overview 9

R
register pane 25
registers 45

select a format 45
running

scripts 43

S
saving

files 33
script editor 25
scripts

advanced editing features 36
break or pause 44
change text case 37
comment a selection 36
compiling 42
display colums 80 guide 36
editing 35
find an error 43
highlight a current line 36
mark line modifications 36
restart 45
115

116

U
se

r
G

u
id

e
 running 43
step 45
stop 45
uncomment a selection 37
unmark line modifications 36

searching
code 37
errors 42
regular expression 38, 39
wildcards 38, 39

software
installing 12

T
toolbar

main toolbar 27

U
user interface 25

W
window placer 26

E
lli

sy
s

U
S
B
 E

xp
lo

re
r

2
6
0
 G

en
er

at
o
r

117

	Table of Contents
	About this Manual
	1 Product Overview
	1.1 Overview
	1.2 Main Features

	2 Installing the Ellisys USB Explorer 260
	2.1 Software Prerequisites
	2.2 Installing Software
	2.3 Front Panel Overview
	2.4 Back Panel Overview
	2.5 Connecting to the Computer

	3 User Interface Reference
	3.1 Organizing Panes
	3.2 Main Toolbar
	3.3 Main Menu
	3.4 Opening a File
	3.5 Saving a File
	3.6 Printing a File
	3.7 Editing a Script
	3.8 Advanced Editing Features
	3.9 Searching
	3.10 Working with Bookmarks
	3.11 Working with Breakpoints
	3.12 Compiling a Script
	3.13 Running a Script
	3.14 Working with Registers

	4 Language Reference
	4.1 Comments
	4.2 Include Files
	4.3 Constants Declaration
	4.4 Variables Declaration
	4.5 Functions Declaration
	4.6 Function Calls
	4.7 Enumerations Declarations
	4.8 Namespaces Declarations
	4.9 Buffer Usage
	4.10 Counters
	4.11 Timers
	4.12 Stop Keyword
	4.13 Breakpoint Keyword
	4.14 If Statement
	4.15 Switch Statement
	4.16 Repeat Statement
	4.17 While Statement
	4.18 Do While Statement
	4.19 For Statement
	4.20 Mathematical expressions
	4.21 Conditional expressions

	5 Instruction Set Reference
	5.1 Sleep Instruction
	5.2 StartCountdown Instruction
	5.3 WaitCountdownReached Instruction
	5.4 StartTimer Instruction
	5.5 StopTimer Instruction
	5.6 WaitTimer Instruction
	5.7 CopyMemory Instruction
	5.8 CompareMemory Instruction
	5.9 WaitButtonPressed Instruction
	5.10 WaitTriggerIn Instruction
	5.11 GenerateTriggerOut Instruction
	5.12 ConfigureGenerator Instruction
	5.13 ForceLinesState Instruction
	5.14 ReleaseLinesState Instruction
	5.15 WaitLinesState Instruction
	5.16 SendPacket Instruction
	5.17 WaitPacket Instruction
	5.18 WaitTokenPacket Instruction
	5.19 WaitDataPacket Instruction
	5.20 WaitHandshakePacket Instruction
	5.21 WaitAndSendPacket Instruction
	5.22 HostAutoGenerateSof Instruction
	5.23 HostWaitGeneratedSof Instruction
	5.24 HostSetMaxTransactionDuration Instruction
	5.25 HostResetMaxTransactionDuration Instruction

	Frequently Asked Questions
	Glossary
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

