
70 Issue 157 August 2003 CIRCUIT CELLAR® www.circuitcellar.com

I just received a PICkit 1 Flash starter
kit, and, to my surprise, the program-
ming interface is USB! Imagine that—
a USB port on the most basic of
Microchip’s development boards (see
Photo 1). Although I think the PICkit
1’s USB programming port is a good
thing, I still have some problems with
USB when it comes to pulling a per-
sonal USB project together.

Thanks to folks like Microchip,
Cypress, and National Semiconductor,
USB hardware is relatively cheap and
easy to obtain. All of the companies go
out of their way to provide useful exam-
ple code, and some even offer compre-
hensive USB tutorials aimed at their
products. On the other hand, if you
want to market a USB-equipped product,
you have to either fork out $2500 per
year to join the club (i.e., USB
Implementers Forum) or obtain
a USB vender ID (good for two
years) for a measly $1500. Either
way, your product must pass var-
ious tests to be certified. When
the words “test” and “certifica-
tion” are used, it usually means
more money out of your pocket
that has to be offset by raising
the product’s market price.

You can’t get something for
nothing, and I’m sure the USB
license fees are used to enhance
the processes and tools imple-
mented by the USB development
community. It looks like the pro-
ceeds are being put to good use,
because the free USB tools on the

company’s actions indicated that it isn’t
interested in showing you its products.

So, I’ve decided to prove that you can
obtain personal USB connectivity with-
out spending tens of thousands of dollars
on license fees, lab certifications, USB
vendor logos, and expensive USB analy-
sis tools. I am officially on a mission.

TRACKING DOWN USB
After I had decided to write this

article, I set out to find a suitable and
inexpensive USB analysis tool. To do
so, I started my e-mail engine and
donned my telephone headset. In less
than a day, I located and obtained the
holy grail of USB, an Ellisys USB
Tracker 110 (see Photo 2).

The USB Tracker 110 is a small hard-
ware device that traps, decodes, and dis-
plays a USB datastream flowing between

the USB device being tested and
a PC. Installing the USB Tracker
110 was a snap: I downloaded the
latest version of the analysis soft-
ware, UsbShow (www.usbtracker.
com), and after a few mouse
clicks, the USB Tracker 110 soft-
ware and driver set were installed.

The next step involved con-
necting the USB Tracker 110 to
the analysis computer. After the
standard “I have found a new
USB device” Windows message
had appeared, I manually direct-
ed the installation wizard to
install the USB Tracker 110
drivers that I had previously
downloaded. I got a magic wand

Mission Possible:
Achieve Cheap USB Connectivity

APPLIED PCs by Fred Eady

official USB web site are useful for pre-
paring a product for USB certification.

USB license fees are small change to
large companies. Unfortunately, $2500
or even $1500 may prevent a smaller
enterprise from entering the USB mar-
ket, because the license fee is just a
small part of what is needed to seri-
ously develop USB devices.

I had wanted to show you some of
the devices, so I contacted a well-
known producer of USB analyzers. The
company’s least expensive analysis tool
runs for approximately $8000, and its
top-of-the-line USB analyzers top out
at more than $30,000. There are several
negative words I could use to describe
our conversations. Anyway, as you read
this article, you won’t find any of the
company’s equipment pictured or men-
tioned. The bottom line is that the

Exorbitant USB licensing fees and the high price of analysis tools have denied many of you
access to the USB marketplace. A champion of the individual designer, Fred is on a mission
to prove that it’s possible to achieve personal USB connectivity without breaking the bank.

Photo 1—The PICkit 1 Flash starter kit is designed to program and read the
new 14-pin flash memory PICs and the legacy 8-pin flash memory parts. The
PICkit 1 comes with an extensive software and firmware library that includes
source code for the host and PIC USB interface. I populated the snap-off
part of my PICkit 1 with a Sipex SP232ACP and supporting components.

Circuit Cellar, the Magazine for Computer Applications. Reprinted
by permission. For subscription information, call (860) 875-2199, or
www.circuitcellar.com. Entire contents copyright ©2001 Circuit
Cellar Inc. All rights reserved.

www.circuitcellar.com CIRCUIT CELLAR® Issue 157 August 2003 71

from the Windows installation wizard,
and the USB Tracker didn’t smoke, so
all was going well.

This is a good place to pause the USB
Tracker 110 discussion and comment
on the USB hardware I collected for
analysis. I have two USB development
boards and a PICkit 1 that can connect
to my newly acquired USB Tracker 110.
Let’s begin by looking at ME Labs’s
PICProto USB development board.

PICProto USB
The reader response to my column

titled “A P89C668 Development Board
for 8051 Fans” was enough to tell me
that the BASIC programming language
is—as it relates to the 8051, PIC, and
AVR—alive and well (Circuit Cellar
151). ME Labs offers a good PIC BASIC
compiler called PicBasic. I got a copy of
PicBasic Pro because it’s more than a
decent BASIC compiler. The professional
version is relatively inexpensive, and it
supports Microchip’s flavor of low-speed
USB, which is driven by the PIC16C745
and PIC16C765 microcontrollers.

The PICProto USB development
board was refreshing because I had to
build it completely from scratch. I had
to fly in two components, a 6-MHz
ceramic resonator and a series-B USB
connector. Otherwise, the through-
hole assembly process was quick and
easy. A schematic and bill of materials
are included with the bare silk-
screened PICProto USB PCB.

For a complex interface, the USB
hardware is just as simple as basic RS-
232 hardware. In fact, I’ll go out on a
limb and say that a PIC-based USB hard-
ware interface is actually simpler than a
PIC-based RS-232 hardware interface.

The PIC16C745 and PIC16C765 USB
microcontrollers are self-contained and
don’t require any of the auxiliary level-
shifting circuitry that is common for
true RS-232 implementations. Using
the PIC16C765 or PIC16C745, a bare-
bones USB hardware interface consists
of the PIC, a couple of 0.1-µF bypass
capacitors, a VUSB filter capacitor, a
ceramic resonator, a resistor, and the
series-B USB connector. Even though
the PIC USB solution provides for a
simpler hardware interface, USB com-
munication requires much more effort
to implement.

On the PICProto USB development
board, the 28-pin PIC16C745 IC sock-
et lies inside the 40-pin PIC16C765 IC
socket. I wanted to be able to mount
either the 40-pin PIC16C765 or the
28-pin PIC16C745 on the PICProto
USB development board. So, I used
machined header pins to populate the
40-pin socket pads instead of a standard
40-pin socket. This allowed me to sol-
der a standard 0.3″ 28-pin socket inside
the 40-pin socket footprint. My com-
pleted PIC-less PICProto USB develop-
ment board is shown in Photo 3.

Because there is no “F” in their names,
the PIC16C745 and PIC16C765 micro-
controllers are available as either
windowed ultraviolet erasable parts or
one-time programmable (OTP) parts. I
have a fancy timer-equipped EEPROM
eraser, but I’ve been spoiled by the easy-
to-program, flash memory-based PICs.
Because the new generation of flash
memory-based USB PICs wasn’t avail-
able when I started this article, I used
the MPLAB ICE 2000 and a PCM16XQ1
processor module to stand in for the
windowed PIC16C745 and PIC16C765.

Before attempting to read the PIC-
Proto USB development board’s USB
datastream with the USB Tracker 110,
it may be a good idea to check to see if
all of the solder joints took. A small
USB demo program that moves the test
computer’s cursor is included with the
PicBasic Pro compiler. I loaded that
puppy into the MPLAB ICE 2000 to
see if I could twirl the cursor.

Using the MPLAB ICE 2000 instead
of the real thing required that I invoke
the MPLAB IDE. Normally, that would
have meant loading and running a sep-
arate IDE for the PicBasic Pro compil-
er. Not in this case. The PicBasic Pro
compiler is capable of running as a lan-
guage toolset within the latest version

of the MPLAB IDE. Although being able
to run PicBasic Pro and MPLAB in a sin-
gle IDE is a good thing in terms of devel-
opment, there is another upside to this
union: PicBasic Pro generates a standard
.cod file that allows for debugging using
the MPLAB ICE 2000 hardware.

After plugging in the MPLAB ICE
2000 PCM16XQ1 USB processor mod-
ule and attaching a 40-pin DIP device
attachment module to the end of the
processor module’s cable, I carefully
plugged the MPLAB ICE 2000 device
attachment’s gold-plated 40-pin DIP
header into the 40-pin header socket
that I had installed on the PICProto
USB development board. Then, I
jumpered the PICProto USB develop-
ment board for USB-supplied power.

At that point, I loaded the PicBasic
Pro USB demo, USBMOUSE.BAS, in the
MPLAB IDE. I couldn’t get a good reset
on the MPLAB ICE 2000. After clicking
the MPLAB IDE Run icon a few times
without success, I figured that some-
thing wasn’t working correctly.

I first took the software problem
determination route. (After all, my sol-
dering should be perfect.) I muddled
around, trying this and that with files
and such with no joy. OK, maybe I did
have a problem with the PICProto USB
development board hardware. So, I dis-
connected the PICProto USB develop-
ment board and took it to the bench for
a look under the magnifier. As I had
expected, all was well with the solder-
ing job and component placement.

I did not cut any of the default

Photo 2—You don’t need anything but this little box, a
downloadable software application, and three USB
cables to help unlock the mysteries of USB. It costs
less than $1000 .

Photo 3—All of the goodies that complement the every-
day PIC are included with this board. There are a couple
of potentiometers, a pair of LEDs, and two push-button
switches. The 25-pin connector pad layout suggests that
a serial-to-USB thing could happen in the prototype area.

72 Issue 157 August 2003 CIRCUIT CELLAR® www.circuitcellar.com

jumpers on the PICProto USB develop-
ment board. The only live jumper pins
were the power-source pins. I decided
to reattach the MPLAB ICE 2000 and
move the powered-by jumper from
USB to external. The MPLAB ICE 2000
reset was successful, and I was able to
configure the MPLAB ICE 2000 to use
the PICProto USB development board’s
power and clock. Obviously, the emu-
lator and associated electronics drew a
bit more current than the USB was
willing to supply at that point. Despite
the little drawback, it was good.

I had already created a project directo-
ry and copied the USBMOUSE.BAS file
into it. A study of the USB documenta-
tion that was included with the PicBasic
Pro compiler indicated that I would
need to add supporting files to the
project as well. These files, which
were included with the compiler, pro-
vide a basis for the USB hardware layer
that is intended to reside in the PIC
firmware. The PicBasic Pro USB support
files are based on the original Microchip
USB support files and have been modi-
fied to compile under PicBasic Pro.

Having put my emulator hardware
problem behind me, I was on my way

to compiling the USB demo
code and controlling a cur-
sor. Well, not quite on my
way. I clicked the MPLAB
IDE’s Build icon and was
greeted with what seemed
to be a million error mes-
sages, which wasn’t good.

My first clue was the first
error, which stated that it
could not open a particular
include file, P16C765.INC.
That’s easy enough, I said to
myself. I’ll just rename the
PicBasic Pro 16C765.INC to
P16C765.INC and things
will once again be good. Ha!
My mouth was still open
when the dust stirred by a
million more error mes-
sages had settled. OK,
maybe the list file would
reveal an answer. Duh. My
second clue was on the first
error line of the listing.
MPASM header was the
comment beside the lost
P16C765.INC file.

You can configure the PicBasic Pro to
use either the MPLAB assembler
(MPASM) or the internal PicBasic Pro
assembler (PM). Well, there’s a big check
mark in the “Use MPASM Assembler”
box under the MPLAB IDE’s project
build options. I had renamed the PM

include file (16C765.INC) to fool the
MPLAB IDE assembler, but the MPLAB
IDE assembler didn’t bite on the con-
tents of the newly monikered file.

I checked my Win2K path variable
and indeed the entry for the Microchip
MPLAB IDE include files was there.
Without question (I was desperate), I
simply copied the Microchip-provided
MPLAB IDE P16C765.INC and
P16C764.INC include files into my
PicBasic Pro USB project directory.

Here we go. After clicking on the
MPLAB IDE Build icon, I was hum-
ming my favorite Bob Marley tune,
“Jammin’.” After another click on the
MPLAB IDE Run button, I was grow-
ing dreadlocks. The test machine’s cur-
sor was going in circles and dancing to
the reggae beat. It was good indeed.

BACK ON TRACK(ER)
If you’re a drag racing fan, you know

that most of the real work is done in
the pits before the race. The same can
be said for working with USB. Before
powering up the PICProto USB develop-
ment board, I reread Jan Axelson’s
book, USB Complete: Everything You
Need to Develop Custom USB
Peripherals. [1] In addition, I perused
the Microchip USB documentation and
datasheets to get the particulars on the
PIC16C765 and PIC16C745 USB micro-
controllers. A good collection of USB

Photo 4—I wanted to show you the USBInit instruction and the
MPLAB ICE 2000 breakpoint. Now you should have an idea of how
PicBasic Pro fits inside an MPLAB IDE session. Note that only two
PicBasic Pro USB commands are used, USBInit and USBOut.

Photo 5—I couldn’t possibly show you everything, so I’ve decided to give you copies of all of my traces. You can
view them using the USB Tracker 110 display software, UsbShow.

www.circuitcellar.com CIRCUIT CELLAR® Issue 157 August 2003 75

data comes with Microchip’s PICDEM
USB development board.

After working out the initial emulator
and compiler bugs, I decided to test run
the USB Tracker 110. I used the result-
ing USB trace in conjunction with
Axelson’s book and the USB specifica-
tion to determine what was needed from
a firmware standpoint to be successful
with USB. Now, I’ll explain how it went.

Slow-motion photography is often
used to study the minute details of a
fast-moving event. You can do a simi-
lar thing electronically using an emu-
lator like the MPLAB ICE 2000. So, I
added a breakpoint to the PicBasic Pro
compiler demo USB code to see if I
could stop the USB process and exam-
ine it up to that point (see Photo 4).
The PicBasic Pro compiler only sup-
ports three USB BASIC commands:
USBINIT, USBIN, and USBOUT.
According to Axelson’s book and the
USB specifications, three simple USB
commands won’t cut it. However, I
saw two of those simple little com-
mands wiggle a cursor using a rudi-
mentary PIC circuit and USB. It was
time to sip from the Holy Grail.

I inserted the USB Tracker 110 into
the loop with the analysis computer at
the USB Tracker 110 analyzer tap. The
test computer and PICProto USB devel-
opment board were plugged into the
USB Tracker 110’s device under test
sockets. According to the PicBasic Pro
Basic compiler description, the USBINIT
command initializes the USB device and
completes when the USB device is con-
figured and enabled. I knew from my
reading that the USB device must first
enter the powered state and then pro-
ceed to the default, addressed, and con-
figured states (in that order) before being
able to intelligently communicate with
the host. That is called enumeration.
But how does the PicBasic Pro USBINIT
command do it all?

Behold the screen shot in Photo 5,
which is the USB Tracker 110’s view of
everything USB that transpired between
the test PC and the PICProto USB devel-
opment board from the time the board
was powered up. Wow! Think about
what you could do with this informa-
tion. With the trace, you could correlate
the trace data to a corresponding seg-
ment of PicBasic Pro source code, and

you should be able to investigate the par-
ticulars of the USBINIT command. Let’s
work through an example. You can fol-
low along using the USB Tracker 110
trace data in Photo 5 and either the origi-
nal USB specification or USB Complete.

According to both sources, after a
successful initial USB hardware reset
sequence, the host PC will issue a
GetDescriptor request. At power-up, the
PIC-based USB device goes into a pow-
ered state with its interrupts enabled.
When the PIC is able to execute instruc-
tions, the USBINIT macro invokes
the InitUSB code that resides in the
Microchip-supplied USB_CH9.asm mod-
ule. When the host sees that the device
is powered, it issues a USB reset to the
powered device. Looking at the USB
trace, the Extended SE0 (26.3 ms) is
most likely the USB reset from the host.
After starting the USB trace, it took a
few seconds to plug in the PICProto
USB development board’s USB cable and
start the MPLAB ICE 2000 emulator.

The host USB reset then triggers the
PIC’s USB reset interrupt, which con-
figures the PIC’s USB address to 0x00
and enables endpoint zero. This collec-
tion of zeros is in the default state
because every USB device must have
an active endpoint zero at that point.
In the default state, a USB address has
not been assigned by the host, and the

host expects to be able to talk to the
newly found device at the 0x00 address
using the bidirectional endpoint zero.
The default state endpoint and device
addresses (0x00) are verified in the first
GetDescriptor(Device) trace entry.

The first transaction after the forced
reset from the host is a set-up transac-
tion aimed at device zero, endpoint zero.
As you can see in Photo 6, the USB
Tracker 110 and UsbShow trace pro-
gram are able to show and decode the
bit fields inside common USB packets.
They also display the raw packet data.

You can pick out all sorts of details
from the packet information provided
by the USB Tracker 110 and UsbShow.
For instance, in the data packet of the
SETUP transaction, the packet iden-
tifier (PID) is actually the least signifi-
cant nibble of the PID. The most sig-
nificant nibble of every PID is a com-
plement of the PID’s least significant
nibble, which, along with a CRC
word, helps to ensure data integrity.

In the aforementioned example, the
token packet is followed by a data
packet, which contains the set-up
request information. Axelson says that
although the host asks for 64 bytes, it
will only read the first 8 bytes because
all it really wants is the eighth byte of
the device descriptor, which contains
the maximum packet size. She’s right.

Photo 6—This is a handy feature. Before obtaining a USB Tracker 110, I found myself searching through the
pages of the USB specification and Microchip USB source code looking for the tables and declarations that defined
the various bit fields.

76 Issue 157 August 2003 CIRCUIT CELLAR® www.circuitcellar.com

Axelson’s Carnac-inspired foresight
is reinforced by an information mes-
sage that UsbShow posts for the SETUP
transaction. The UsbShow message
tells you that the retrieval of less than
64 bytes is not an error and that the
host would later ask again for the
device descriptor information. Looking
ahead in the trace shows you that the
entire device descriptor is read in after
the device address is established.

Using the ’16C765 and ’16C745 USB
micros eliminates a great deal of USB
configuration confusion because they’re
low-speed devices. Low-speed devices
are limited in many ways, one of which
is the maximum packet size, which is
set at 8 bytes. You can see the 8-byte
limit enforced throughout the USB trace.

Moving to the next transaction, the
IN transaction pulls the 8 bytes of
the 64 bytes of requested data from the
PICProto USB development board’s PIC
firmware. The host has just enough
information and status to grant the
PICProto USB development board a USB
address. But before knighting the devel-
opment board, the host wisely resets it
to make sure it is in the default state
before sending the SetAddress request.

After the SetAddress request is
acknowledged, the PICProto USB
development board is considered to be
in the addressed state. As you can see
in the trace, the development board
was reset and assigned an address (2).
Remember that everything in USB is
about the host. So, IN means to the
host, and OUT is from the host.

From what you’ve seen thus far, you
probably have a good idea of how the

rest of the USB enumeration process
will flow. Looking at the trace, you
can see that device, configuration, and
string descriptors are collected from
the PICProto USB development board’s
firmware as the USB enumeration
sequence progresses. The Windows OS
assimilates all of the data collected
from the PIC and finally sends a
SetConfiguration request, which
ultimately results in placing the devel-
opment board in the configured state.
After configuration, the development
board can pass data to and receive data
from the host PC (the test computer).

THE SONG REMAINS THE SAME
I unplugged the 40-pin MPLAB ICE

2000 device adapter from the PICProto
USB development board and plugged it
into the 40-pin PIC16C765 socket on
my PIDCEM USB development board.
I clicked on the MPLAB IDE Run icon
and, lo and behold, the PICProto USB
development board demo code ran on
the PICDEM USB as it should.

Although cosmetically modified to
compile inside PicBasic Pro, the core
USB code and fundamental hardware
design are identical. The PICDEM USB
development board differs from the ME
Labs PICProto USB development board
only in the amount of on-board equip-
ment. The former comes assembled with
a USB CD-ROM containing support code
and documentation, a preprogrammed
PIC16C765 full of demo code, a 3′ USB
A-B cable, a blank ’16C745, and a blank
’16C765 (see Photo 7). It also includes a
serial port, a game port, a PS/2 key-
board/mouse port, enumeration status
LEDs, and a backlit LCD landing pad.

I wasn’t able to show you every detail
of the USB traces, and I would need a
few more pages to take a complete look
at the features offered by the USB
Tracker 110 and UsbShow. So, instead
of leaving you hanging, I’ve included all
the USB trace data that I took from the
PICKit1 Flash starter kit, the PICProto
USB, and the PICDEM USB. You may
download the data from the Circuit
Cellar ftp site. The core USB source
code is on Microchip’s web site.

If you’re wondering how you’re going
to read the USB traces, simply down-
load your freeware copy of UsbShow
(www.usbtracker.com). The UsbShow

software will display the USB traces
I’ve provided and the detail contained
within them. However, you won’t be
able to take your own USB traces with-
out a USBTracker 110. The USB
Tracker web site also has a great picto-
rial overview of what the USB Tracker
110 and UsbShow can do. Reviewing
the overview will make it easier to
interpret the USB traces. USB is com-
plicated, but at least it’s embedded. IPhoto 7—If you prefer an assembled alternative to the

PICProto USB, the Microchip PICDEM USB provides
the basic functionality of the PICProto USB in addition
to the ability to experiment with using USB to control an
LCD and game pad. The PICDEM USB LEDs, which
can be switched out with a jumper or at the firmware
level, illuminate to signal each state of enumeration.

Fred Eady has more than 20 years of
experience as a systems engineer. He
has worked with computers and com-
munication systems large and small,
simple and complex. His forte is
embedded-systems design and com-
munications. Fred may be reached at
fred@edtp.com.

PROJECT FILES
To download the UsbShow files, go to
ftp.circuitcellar.com/pub/Circuit_
Cellar/2003/157.

REFERENCE
[1] J. Axelson, USB Complete:

Everything You Need to Develop
Custom USB Peripherals, Lake-
view Research, Madison, WI, 2001.

SOURCES
USB Tracker 110
Ellisys Sarl
www.ellisys.com

MPLAB ICE 2000, PIC16C745,
PIC16C765, PICDEM USB, and
PICkit 1 starter kit
Microchip Technology, Inc.
www.microchip.com

PicBasic Pro compiler, PICProto USB
microEngineering Labs, Inc.
www.microengineeringlabs.com

SP232ACP Transceiver
Sipex Corp.
www.sipex.com

RESOURCES
www.ellisys.com/company/distributors.php

ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2003/157
http://www.ellisys.com
http://www.microchip.com
http://www.microengineeringlabs.com
http://www.sipex.com
http://www.ellisys.com/company/distributors.php

